Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/9911
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18258/20456 (89%)
Visitors : 5866104      Online Users : 1098
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/9911


    Title: 銀杏葉以熱風、室溫及冷凍方式風乾後,比較其萃取物抗氧化活性之研究
    Authors: 林美芳
    Contributors: 生活應用與保健系
    Keywords: 銀杏葉
    類黃酮類
    抗氧化
    Ginkgo biloba
    flavonoids
    antioxidant capacity
    Date: 2008
    Issue Date: 2009-02-20 11:43:37 (UTC+8)
    Publisher: 台南縣:嘉南藥理科技大學生活應用與保健系
    Abstract: 本研究目的是探討銀杏葉(Ginkgo biloba leaf)以熱風、室溫及冷凍方式風乾後,比較其萃取物抗氧化活性之研究。研究結果顯示,不同乾燥方式處理銀杏葉乙醇萃取物,以室溫乾燥銀杏葉乙醇萃取物總酚含量較高;銀杏葉乙醇萃取物之類黃酮含量(檞皮素、異鼠李素及堪非黃酮醇)為每毫克萃取物中含8.00-26.56微克。銀杏葉水萃取物每毫克之總酚含量為10.69-39.07微克;不同乾燥方式處理銀杏葉水萃取物以室溫乾燥銀杏葉水萃取物總酚含量較高;銀杏葉水萃取物之類黃酮含量(檞皮素、異鼠李素及堪非黃酮醇)為每毫克萃取物中含2.60-12.95微克。在抗氧化能力方面,不同乾燥方式處理銀杏葉之DPPH自由基半數清除能力均以新鮮銀杏葉乙醇萃取物或新鮮銀杏葉水萃取物較佳。每毫克商業配方、銀杏葉乙醇萃取物及銀杏葉水萃取物之還原力分別相當91.21微克、20.00-28.63微克及19.29-28.09微克之維生素C含量;乾燥方式以室溫、熱風及冷凍乾燥銀杏葉乙醇萃取物或新鮮銀杏葉水萃取物及室溫乾燥銀杏葉水萃取物之還原力較佳。商業配方、銀杏葉乙醇萃取物及銀杏葉水萃取物之Trolox能力分別為每毫克80.56微克、5.90-13.73微克及7.95-12.21微克;乾燥方式以室溫乾燥銀杏葉乙醇萃取物及冷凍乾燥銀杏葉水萃取物之Trolox能力較佳。商業配方及銀杏葉乙醇萃取物之螯合亞鐵離子能力為相當36.91微克EDTA (ethylenediaminetetraacetic acid)及60.28-88.72微克EDTA;螯合亞鐵離子能力以銀杏葉乙醇萃取物高於商業配方。整體而言,以室溫乾燥方式處理銀杏葉能保留較多的有效成分,亦呈現較佳的抗氧化能力。
    The objective of the present study was to investigate the effect of drying methods on antioxidant capacity The total yields of ethanol or water Ginkgo biloba extracts by different drying methods were 5.67-25.40% or 6.20-26.93%. Total phenol contents of ethanol extracts were 24.07-60.00 μg per mg, and showed higher (p<0.05) phenolic compounds obtained from Ginkgo biloba leaves by ethanol extracted for room temperature drying. The flavonoids (i.e. quercetin, isorharmnetin and kaempferol) concentrations from ethanol Ginkgo biloba extracts were 8.00-26.56 μg per mg. Total phenol contents of water extracts were 10.69-39.07 μg per mg, and showed higher phenolic compounds obtained from Ginkgo biloba leaves by water extracted for room temperature drying. The flavonoids (i.e. quercetin, isorharmnetin and kaempferol) concentrations were 2.60-12.95 μg per mg from water Ginkgo biloba extracts. There was significantly higher DPPH radical cation scavenging capacity in ethanol or water fresh Ginkgo biloba extracts. The reducing power concentrations were 91.21 μg, 20.00-28.63 μg or 19.29-28.09 μg vitamin C equivalent per mg, respectively, for commercial tablet, ethanol or water Ginkgo biloba extracts, there were higher reducing power in ethanol Ginkgo biloba extracts by room temperature, oven or freeze drying or water Ginkgo biloba extracts by fresh or oven drying. The equivalent antioxidant Trolox capacity were 80.56μg, 5.90-13.73 μg or 7.95-12.21 μg per mg, respectively, for commercial tablet, ethanol or water Ginkgo biloba extracts, there were higher Trolox capacity in ethanol Ginkgo biloba extracts by room temperature drying or water Ginkgo biloba extracts by freeze drying. The ferrous ions chelating activity of commercial tablet or ethanol Ginkgo biloba extracts were 36.91μg or 60.28-88.72 μg per mg, there was higher ferrous ions chelating activity in ethanol Ginkgo biloba extracts than in commercial tablet. Conclusion: While room temperature drying usually preserved more flavonoids and antioxidant activity of Ginkgo biloba extract, further.
    Relation: 計畫編號:CN9727
    Appears in Collections:[Dept. of Life and Health Science] Chna Project

    Files in This Item:

    File Description SizeFormat
    97CN9727.pdf222KbAdobe PDF1829View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback