Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/34406
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18034/20233 (89%)
Visitors : 23997566      Online Users : 435
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/34406


    Title: Antimicrobial ability and mechanism analysis of Lactobacillus species against carbapenemase-producing Enterobacteriaceae
    Authors: Chen, Chi-Chung
    Lai, Chih-Cheng
    Huang, Hui-Ling
    Su, Yu-Ting
    Chiu, Yu-Hsin
    Toh, Han-Siong
    Chiang, Shyh-Ren
    Chuang, Yin-Ching
    Lu, Ying-Chen
    Tang, Hung-Jen
    Contributors: Chi Mei Med Ctr, Dept Med Res
    Natl Chiayi Univ, Dept Food Sci
    Kaohsiung Vet Gen Hosp, Dept Internal Med, Tainan Branch
    Chia Nan Univ Pharm & Sci, Dept Hlth & Nutr
    Chi Mei Med Ctr, Dept Internal Med
    Chi Mei Med Ctr, Dept Internal Med
    Keywords: Lactobacillus
    Carbapenemase-producing Enterobacte-riaceae
    Organic acid
    Lactic acid
    In vitro activity
    Date: 2021
    Issue Date: 2023-11-11 11:50:08 (UTC+8)
    Publisher: ELSEVIER TAIWAN
    Abstract: Background: This study aims to investigate the antimicrobial ability and mechanism analysis of Lactobacillus species against carbapenemase-producing Enterobacteriaceae (CPE). Methods: Five Lactobacillus spp. strains and 18 CPE clinical isolates were collected. Their antiCPE effects were assessed by agar well diffusion and broth microdilution assay, as well as time kill test. Finally, the specific anti-CPE mechanism, especially for the effect of organic acids was determined using broth microdilution method. Results: All of five Lactobacilli isolates displayed the potent activity against most CPE isolates with mean zones of inhibition ranging 10.2-21.1 mm. The anti-CPE activity was not affected by heating, catalase, and proteinase treatment. Under the concentration of 50% LUC0180 cell free supernatant (CFS), lactic acid, and mix acid could totally inhibit the growth of carbapenem-resistant Klebsiella pneumoniae (CPE0011), and acetic acid could inhibit 67.8%. In contrast, succinic acid and citric acid could not inhibit the growth of CPE0011. While we decreased the concentration to 25%, only lactic acid and mix acid displayed 100% inhibition. In contrast, succinic acid, citric acid and acetic acid did not show any inhibitory effect. Conclusions: Lactobacillus strains exhibit potent anti-CPE activity, and lactic acid produced by Lactobacillus strains is the major antimicrobial mechanism. Copyright & ordf; 2020, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
    Relation: J MICROBIOL IMMUNOL, v.54, n.3, pp.447-456
    Appears in Collections:[Dept. of Health and Nutrition (including master's program)] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML112View/Open
    j.jmii.2020.01.005.pdf1888KbAdobe PDF46View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback