Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/26986
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18076/20274 (89%)
造訪人次 : 4870633      線上人數 : 1101
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/26986


    標題: The Optimization Study of Thiophene Removal by Ultrasound Assisted Oxidative Desulfurization Process
    作者: Chen, Teng-Chien
    Shen, Yun-Hwei
    Lee, Wen-Jhy
    Lin, Chih-Chung
    Wan, Meng-Wei
    貢獻者: 環境工程與科學系
    關鍵字: optimization
    oxidative desulfurization
    thiophene
    ultrasound
    UAOD process
    日期: 2011-07
    上傳時間: 2013-10-16 09:08:44 (UTC+8)
    出版者: MARY ANN LIEBERT INC
    摘要: Thiophene (T) is considered one of the most refractory organic sulfur compounds in oxidative desulfurization. This study used an ultrasound-assisted oxidative desulfurization process to optimize T oxidation on a bench scale. Four control factors, including durations of sonication, the amounts of transition metal catalyst (TMC), phase transfer agent (PTA), and hydrogen peroxide, were carefully examined. The best operation condition, evaluated by using the analysis of variance, was found at mass ratios of T:H2O2:PTA:TMC at 1:1.5:0.005:0.01 with 20 min of sonication, where almost 73.5% of T, 89.9% of benzothiophene (BT), and 100% of dibenzothiophene (DBT) were oxidized to their corresponding sulfones. Moreover, the electron density on the sulfur atom of various compounds, including T, BT, and DBT, and their methyl-substituted derivatives and oxidation rate constants were also examined. The oxidative reactivity of sulfur compounds increased with the increasing electron density on sulfur atoms. The T that is commonly considered more difficult to the oxidized is attributed to the combined effect of low electron density of the sulfur atom and low boiling temperature under mild oxidation reaction. This information is essential for the deep desulfurization process under oxidative conditions.
    關聯: Environmental Engineering and Science, 29(7), pp.E132-E142
    顯示於類別:[環境工程與科學系(所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1756檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋