Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/26986
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18055/20253 (89%)
造访人次 : 25100570      在线人数 : 523
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/26986


    標題: The Optimization Study of Thiophene Removal by Ultrasound Assisted Oxidative Desulfurization Process
    作者: Chen, Teng-Chien
    Shen, Yun-Hwei
    Lee, Wen-Jhy
    Lin, Chih-Chung
    Wan, Meng-Wei
    貢獻者: 環境工程與科學系
    關鍵字: optimization
    oxidative desulfurization
    thiophene
    ultrasound
    UAOD process
    日期: 2011-07
    上傳時間: 2013-10-16 09:08:44 (UTC+8)
    出版者: MARY ANN LIEBERT INC
    摘要: Thiophene (T) is considered one of the most refractory organic sulfur compounds in oxidative desulfurization. This study used an ultrasound-assisted oxidative desulfurization process to optimize T oxidation on a bench scale. Four control factors, including durations of sonication, the amounts of transition metal catalyst (TMC), phase transfer agent (PTA), and hydrogen peroxide, were carefully examined. The best operation condition, evaluated by using the analysis of variance, was found at mass ratios of T:H2O2:PTA:TMC at 1:1.5:0.005:0.01 with 20 min of sonication, where almost 73.5% of T, 89.9% of benzothiophene (BT), and 100% of dibenzothiophene (DBT) were oxidized to their corresponding sulfones. Moreover, the electron density on the sulfur atom of various compounds, including T, BT, and DBT, and their methyl-substituted derivatives and oxidation rate constants were also examined. The oxidative reactivity of sulfur compounds increased with the increasing electron density on sulfur atoms. The T that is commonly considered more difficult to the oxidized is attributed to the combined effect of low electron density of the sulfur atom and low boiling temperature under mild oxidation reaction. This information is essential for the deep desulfurization process under oxidative conditions.
    關聯: Environmental Engineering and Science, 29(7), pp.E132-E142
    显示于类别:[環境工程與科學系(所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1627检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈