Let {Yi:-∞<i<∞} and {Xi:∞<I<∞} be two Φ-mixing stationary sequences of random variables with P (Yi=1)=1-P(Yi=0)=pn. Define Sn=Y1+…+Yn. Then we obtain the rates of the asymptotic almost sure representation of Sn - npn under different Φ-mixing conditions and are used for proving the asymptotic almost sure representation of the empirical distribution function of Xi. 設{Yi:-∞<i<∞}和{Xi:-∞<i<∞}為兩個Φ-混合穩定的隨機變數序列。P (Yi=1) = 1-P(Yi=0) =Pn。定義Sn=Y1+ …+Yn,在不同的Φ-混合條件下,我們分別得到Sn - npn的幾乎處處近似表現率,並用此証明Xi的經驗累積分配函數之幾乎處處近似表現。