Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/22536
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18074/20272 (89%)
Visitors : 4075970      Online Users : 1014
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    CNU IR > Chna Nan Annual Bulletin > Vol.25 (1999) >  Item 310902800/22536
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/22536


    Title: On Φ -mixing Random Variables
    關於Φ -混合隨機變數
    Authors: Wen-Sz Chiue
    Chung-Wen Chang
    Bih-Sheue Shieh
    Contributors: 化妝品應用管理系
    資訊管理系
    Keywords: Φ -mixing
    stationary
    almost sure representation
    weak dependent
    Φ -混合
    穩定
    幾乎處處
    弱相關
    Date: 1999
    Issue Date: 2010-04-08 13:05:20 (UTC+8)
    Abstract: Let {Yi:-∞<i<∞} and {Xi:∞<I<∞} be two Φ-mixing stationary sequences of random variables with P (Yi=1)=1-P(Yi=0)=pn. Define Sn=Y1+…+Yn. Then we obtain the rates of the asymptotic almost sure representation of Sn - npn under different Φ-mixing conditions and are used for proving the asymptotic almost sure representation of the empirical distribution function of Xi.
    設{Yi:-∞<i<∞}和{Xi:-∞<i<∞}為兩個Φ-混合穩定的隨機變數序列。P (Yi=1) = 1-P(Yi=0) =Pn。定義Sn=Y1+ …+Yn,在不同的Φ-混合條件下,我們分別得到Sn - npn的幾乎處處近似表現率,並用此証明Xi的經驗累積分配函數之幾乎處處近似表現。
    Relation: 嘉南學報 25 : p.185-190
    Appears in Collections:[Chna Nan Annual Bulletin] Vol.25 (1999)
    [Dept. of Cosmetic Science and institute of cosmetic science] Periodical Articles
    [Dept. of Information Management] Periodical Articles

    Files in This Item:

    There are no files associated with this item.



    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback