Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/22283
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18076/20274 (89%)
造访人次 : 4614575      在线人数 : 1284
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/22283


    標題: Characterization of PM2.5 Fugitive Metal in the Workplaces and the Surrounding Environment of a Secondary Aluminum Smelter
    作者: Su-Ching Kuo
    Li-Ying Hsieh
    Cheng-Hsien Tsai
    Ying I. Tsai
    貢獻者: 醫藥化學系
    環境工程與科學系
    關鍵字: Aluminum smelter
    Blast furnace
    Reverberatory furnace
    Metallic profiles
    日期: 2007-10
    上傳時間: 2010-01-15 14:39:39 (UTC+8)
    出版者: Elsevier
    摘要: Fugitive metal in PM2.5 at the blast furnace (S1), reverberatory furnace (S2), and surrounding environment (S0) of a secondary aluminum smelter (a secondary ALS) was studied. PM2.5 mass concentration at the blast furnace exceeded that at the reverberatory furnace and this was especially apparent during operation, giving an early indication that the blast furnace is more important as a pollutant source. Further, PM2.5 mass concentration levels and patterns at S0 indicated that emissions from the blast furnace and reverberatory furnace were the major source of the observed fine particle pollution in the surrounding environment. Si and K were the main components and hence pollutants by mass in the PM2.5 at S1, S2 and S0 during both operation and non-operation. Hg was not detected in the PM2.5 aerosol during smelter operation but was present at all three sampling locations during non-operation. This is due to the falling blast furnace and reverberatory furnace temperatures during non-operation which cause Hg vapor formed during operation to condense to form detectable Hg particles, and hence Hg contributes to the pollutant load during non-operation. Average S1/S0 and S2/S0 mass concentration ratios of 40.32 and 18.53, respectively, for all measured metals during operation and 7.83 and 5.73 for all measured metals during non-operation indicate that metal particulate pollution at the workplaces of secondary ALSs, particularly at the blast furnace during operation, is a serious issue. S1/S0 mass concentration ratios were higher still for Pb (62.22), Ti (113.40) and Ba (248.64), while the S2/S0 mass concentration ratio for Mo was 138.20. Principal component analyses produced a PC1 that explained 32.36–48.16% of the total variance during operation of the smelter and 47.86–69.Ten percent during non-operation. Their strong component loadings were mainly related to the fugitive PM2.5 mass. Compared to atmospheric metal concentrations reported for other regions of the world, the toxic metals that have relatively higher concentrations in the secondary ALS emissions are Cr, Cd, Cu, As, Pb, Se, Al and Zn, especially during smelter operation. Concentrations of these toxic heavy metals are approximately 2–4 orders of magnitude higher than those reported for various industrial regions and metropolises with heavy traffic across the world.
    關聯: Atmospheric Environment 41(32): p.6884-6900
    显示于类别:[食藥產業暨檢測科技系(含五專)] 期刊論文
    [環境工程與科學系(所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2168检视/开启
    PDF0KbHTML2760检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈