Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/26956
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17022/19367 (88%)
造访人次 : 2116333      在线人数 : 926
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    標題: Free energies and folding mechanics between human prion fragment α-2 domain and β-2 domain under steered molecular dynamics simulations
    作者: Wang, Yeng-Tseng
    Su, Zhi-Yuan
    貢獻者: 資訊管理系
    關鍵字: Prion β –sheet
    Prion α-helix 2
    Molecular dynamics
    Folding mechanics
    日期: 2011-09
    上傳時間: 2013-09-28 16:25:37 (UTC+8)
    出版者: Elsevier
    摘要: Prion proteins are associated with a group of transmissible neurodegenerative disorders such as scrapie in sheep and Creutzfeldt–Jakob disease in humans. Previous studies have shown that the C-terminal side of α-helix 2 of the prion protein undergoes a conformational change to the β-sheet form, which is the infectious isoform causing scrapie. However, information about the three-dimensional structure of the prion β-sheet is still lacking. As the α-helix 2 displays “chameleon” conformational behavior, gathering several disease-associated point mutations, it can be toxic to neuronal cells. This makes it a very important focus for research into the folding mechanics of PrPC. The purpose of this study was to investigate the differences in folding mechanics between prion fragment α-helix 2 and prion fragment β-sheet 2, and to use a steered molecular dynamics approach to infer which events are important to achieve a normal α-helix 2 peptide. Based on our simulations, we suggest that 2 conformational barriers, comprising 4 intramolecular hydrogen bonds (the 8th, 9th, 10th, and 11th) and 6 residues (Thr183, Ile184, Lys185, His187, Thr188, and Val189), might play important roles in the folding mechanics of α-helix 2 and that a lack of these events might cause its misfolding. Steered molecular dynamics simulations were carried out on the folding mechanics of protein α-helix 2. The hypothesis we propose is that 6 residues (Thr183, Ile184, Lys185, His187, Thr188, and Val189) are important in the correct folding of prion α-helix 2
    显示于类别:[資訊管理系] 期刊論文


    档案 描述 大小格式浏览次数

    在CNU IR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈