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中 文 摘 要 ： 目前在文獻上應用生物晶片來評估陽離子性高分子PEI基因傳送系統
對於細胞相關基因之調控仍著重於蛋白質編碼 RNA之探討，相對地
陽離子性高分子如何影響miRNA表現之研究仍待補足。我們以生物晶
片研究陽離子性高分子PEI如何影響MEF細胞之miRNA表現模式，並應
用生物資訊工具篩選與證實出三條miRNA (mmu-miR-3090-5p; mmu-
miR-346-3p; mmu-miR-494-3p) 參與細胞毒性機轉中mTOR特定訊息
傳導路徑並誘導細胞自我吞噬。我們更應用聚合酶連鎖反應 PCR 確
認miRNA 共同作用於目標基因生長因子Igf1，並以西方墨點法
Western Blot 確認Igf1及相關指標蛋白質之表現，使我們更完整架
構陽離子性高分子引發細胞毒性之確切分子路徑網路。

中文關鍵詞： 聚乙烯亞胺, 自體吞噬, 微型核糖核酸, mTOR信號傳送途徑, 生物
晶片, 類胰島素生長因子, p53信號傳送途徑

英 文 摘 要 ： Although the toxicology of poly(ethylenimine) (PEI) in gene
expression levels has been
previously investigated, little is known about the effects
of PEI on the expression of microRNAs (miRNAs) that
regulate gene expression at the post-transcriptional level.
In this study, we explored miRNA expression profiles
related to cell death mechanisms in mouse embryonic
fibroblast (MEF) cells treated with PEI by applying
microarray analysis. Based on the analysis of the mTOR
signaling pathway, three upregulated miRNAs (mmumiR-
3090-5p, mmu-miR-346-3p, and mmu-miR-494-3p) were verified
in MEF cells treated with PEI at 24 h using real-time
quantitative reverse transcriptase-polymerase chain
reaction. We further demonstrated that these three
upregulated miRNAs resulted in the decrease of gene and
protein expressions of the target gene growth factor Igf1
in MEF cells treated with PEI or transfected with three
upregulated miRNA mimics. However, these three upregulated
miRNAs are not all cell-specific. Finally, we demonstrated
that the mTOR signaling pathway
is inhibited by autophagy induction and that the cell
viability decreases in MEF cells treated with PEI or
transfected with these three miRNA mimics. Collectively,
our data suggested that PEI may affect the regulation of
miRNAs in target cells.

英文關鍵詞： polyethylenimine (PEI), autophagy, microRNAs (miRNAs), mTOR
signaling pathway, microarray, Igf1, p53 signaling pathway
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ABSTRACT: Although the toxicology of poly(ethylenimine) (PEI) in gene expression levels has been
previously investigated, little is known about the effects of PEI on the expression of microRNAs (miRNAs) that
regulate gene expression at the post-transcriptional level. In this study, we explored miRNA expression profiles
related to cell death mechanisms in mouse embryonic fibroblast (MEF) cells treated with PEI by applying
microarray analysis. Based on the analysis of the mTOR signaling pathway, three upregulated miRNAs (mmu-
miR-3090-5p, mmu-miR-346-3p, and mmu-miR-494-3p) were verified in MEF cells treated with PEI at 24 h
using real-time quantitative reverse transcriptase-polymerase chain reaction. We further demonstrated that these
three upregulated miRNAs resulted in the decrease of gene and protein expressions of the target gene growth
factor Igf1 in MEF cells treated with PEI or transfected with three upregulated miRNA mimics. However, these
three upregulated miRNAs are not all cell-specific. Finally, we demonstrated that the mTOR signaling pathway
is inhibited by autophagy induction and that the cell viability decreases in MEF cells treated with PEI or
transfected with these three miRNA mimics. Collectively, our data suggested that PEI may affect the regulation
of miRNAs in target cells.

KEYWORDS: polyethylenimine (PEI), autophagy, microRNAs (miRNAs), mTOR signaling pathway, microarray, Igf1,
p53 signaling pathway

■ INTRODUCTION

Poly(ethylenimine) (PEI) is one of the most intensively used
cationic polymers in nonviral nucleic acid delivery.1−3 PEI
exhibits efficient delivery in vitro and in vivo because it provides
better buffering capacity than other cationic polymers in the
lysosomes due to the so-called “proton-sponge” effect.4,5

However, high quantities of positive amines in PEI also cause
intrinsic cytotoxicity that limits the clinical applicability of PEI.6

Moreover, PEI has been shown to influence the regulation of
gene expression in vitro and in vivo, and this may interfere with
relevant gene expression via off-target effects.7−10 The vast
number of these regulated genes in PEI-treated cells has been
found to be extensively involved in the molecular mechanisms
of cell death. In a previous study, we identified the regulated
genes related to autophagy in PEI-treated mouse embryonic
fibroblast (MEF) cells.11 Hence, it is important to obtain a deep
understanding of the genetic information regarding cell death
induced by PEI for designing safe nucleic acid delivery systems.
Previous studies on PEI-induced gene regulation have

primarily been based on encoding mRNAs that are translated
into proteins. However, recent studies have demonstrated that
noncoding RNAs are closely related to complex cellular
development systems and various human diseases.12,13 These
noncoding RNA molecules include microRNAs (miRNAs),
small interfering RNAs, PIWI-interacting RNAs, and long
noncoding RNAs.12 Among these noncoding RNAs, miRNAs

are approximately 22 nucleotides long and primarily play
important roles in the post-transcriptional regulation of gene
expression, making them potential targets for therapeutic
applications.14,15 However, the expressions of miRNA in PEI-
treated cells, especially in relation to the molecular mechanisms
of cell death, remain unexplored. In this study, we explored the
regulated miRNAs and identified their target genes in PEI-
treated MEF cells by analyzing the molecular pathways of cell
death. In order to better understand the effects of regulated
miRNAs on molecular mechanisms of cell death, we further
investigated the functional and phenotypic outcomes of these
regulated miRNAs on autophagy induction and cytotoxicity.

■ EXPERIMENTAL SECTION

Materials. Branched PEI 25 K (Mw = 25 000 g/mol) was
purchased from Sigma-Aldrich Co. (St. Louis, MO, USA) and
neutralized (final pH = 7.4) to desired aqueous concentrations
with HCl.

Cell Culture. MEF cell lines were generously provided by
Dr. T. Yoshimori (Department of Genetics, Osaka University
Graduate School of Medicine, Japan). Mouse Lewis lung
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carcinoma (LLC1) and human cervical cancer (HeLa) cells
were obtained from American Type Culture Collection (CRL-
1642 for LLC1 cells and CCL-2 for HeLa cells; Manassas, VA,
USA). The cells were maintained at 37 °C in 5% CO2 and
supplemented with 10% heat-inactivated fetal bovine serum
(FBS) (Invitrogen), 100 U/mL of penicillin, and 100 μg/mL of
streptomycin (Invitrogen). The MEF cells were maintained in
RPMI-1640 medium (Invitrogen Corp., Carlsbad, CA, USA),
while DMEM medium (Invitrogen) was used for the LLC1
cells and HeLa cells.
miRNA Microarray. The miRNA microarrays were carried

out in Mouse & Rat miRNA OneArray v5 (Phalanx Biotech
Group, Hsinchu, Taiwan), which contains 1265 mouse
sequence probes and 48 control sequence probes from Sanger
miRBase Release 19 with three repeats. MEF cells were grown
overnight at 2 × 106 cells per 10 cm dish and then were treated
with 10 μg/mL PEI for 12 and 24 h. Untreated cells after 12 or
24 h incubation were used as negative controls. After treatment,
total RNA was extracted using Trizol (Invitrogen) and isolated
with a miRVana miRNA Isolation Kit (Life Technologies, NY,
USA). The quantity and purity of the purified RNA was assured
using an ND-1000 spectrophotometer (NanoDrop Technolo-
gies Inc., Wilmington, DE, USA) and an Agilent Bioanalyzer
2100 (Agilent Technologies, Santa Clara, CA, USA). The
analysis of miRNA content in the total RNA samples was
performed by small RNA assay with an Agilent Bioanalyzer
2100 according to the manufacturer’s protocol. The intensity of
the 18 and 28 S rRNA bands and the contamination of genome
DNA were evaluated by 1% formaldehyde−agarose gel
electrophoresis. The samples with an optical density (OD)
ratio of 260 nm/280 nm > 1.8, an OD ratio of 260 nm/230 nm
> 1, an RNA integrity number (RIN) > 6, 28 S/18 S > 0.7, and
no contamination of genome DNA were then subjected to
microarray analysis. According to the manufacturer’s protocol,
the fluorescent targets were labeled from 2.5 μg of total RNA
using a ULS miRNA labeling kit (Kreatech Diagnostics,
Amsterdam, The Netherlands) and hybridized to the micro-
array at 37 °C for 14−16 h after a prehybridization procedure
to reduce background signals. The hybridized microarrays were
scanned using an Axon 4000B scanner (Molecular Devices,
Sunnyvale, CA, USA) after washing and spin drying. The data
was analyzed using GenePix 4.1 software (Molecular Devices)
and normalized by 75% media-scaling normalized method.
Normalized intensities were converted into miRNA expression
log2 fold change between untreated controls and PEI-treated
cells. Standard selection criteria to identify differentially
expressed miRNAs were established at the absolute values of
log2 fold change equal to or greater than 0.8 and P-value less
than 0.05. The regulated miRNAs were demonstrated by
unsupervised hierarchical clustering analysis. The potential
target genes of the regulated miRNAs were predicted by
DIANA tools (http://diana.imis.athena-innovation.gr/
DianaTools), and the pathway analysis of target genes was
performed using DIANA miRPath v.2.0, which is based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base.16

Confirming miRNA Expression Using Real-Time
Quantitative Reverse Transcriptase-Polymerase Chain
Reaction (RT-QPCR). The target miRNA expression was
confirmed and quantified using RT-QPCR in a BIO-RAD Mini-
Opticon real-time PCR detection system (Bio-Rad Laborato-
ries, Hercules, CA, USA). The same samples used for the
miRNA microarrays were used for confirming miRNA

expression. RNA samples (400 ng per reaction) were reverse
transcribed into cDNA using a TaqMan miRNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA, USA)
according to the standard protocol of the supplier. The
amplifications were performed under the following conditions:
95 °C for 2 min followed by 45 cycles (95 °C for 5 s, 55 °C for
20 s) using kappa probe Fast qPCR master mix kits (Kapa
Biosystems, Inc., Wilmington, MA, USA). The relative
expression levels of miRNAs to the internal control 18 S
were reported using the Livak method (ΔΔCq). A melting
curve analysis (60 to 99 °C) was conducted after the thermo
profile by detecting only one peak produced to verify specificity
in the amplification. The sequences and primers used in this
study are described in Supplementary Table 1 in the
Supporting Information. Standard curves with 5-fold dilutions
of primer were performed to calculate reaction efficiency. The
PCR reactions were all linear over a range of primer
concentrations, and the calculated PCR efficiencies were all
above 95%.17

Confirming Target Genes Related to Regulated
miRNAs. RT-QPCR was used to confirm the target genes
related to the regulated miRNAs. The same total RNA isolated
for the miRNA microarrays was used for RT-QPCR. Three
independent samples were performed, and each reaction
included 20 ng of cDNA, 500 nM forward and reverse primers,
and Fast SYBR Green PCR Master Mix (Applied Biosystems).
A BIO-RAD CFX Connect real-time PCR machine (Bio-Rad
Laboratories) was used with the following program: 95 °C for 2
min, followed by 39 cycles (95 °C for 5 s, 60 °C for 30 s). A
peak produced in the melting curve analysis (60 to 99 °C) was
checked to verify specificity in the amplification. The data
analysis was performed by BIO-RAD CFX Manager Version 3.0
software (Bio-Rad Laboratories). Target gene RT-QPCR data
was normalized to the reference gene, GAPDH. The primers
used in this study are included in Supplementary Table 2 in the
Supporting Information. The PCR efficiencies were all above
95% based on the primer dilution assay.17

Western Blot. The levels of the expression of proteins were
determined by Western blot analysis as described in our
previous study.11 Rabbit anti-Igf1, rabbit anti-Beclin 1, rabbit
anti-p62, and rabbit anti-LC3 antibodies were obtained from
Novus Biologicals, LLC (Littleton, CO, USA). Anti-PI3K, anti-
phospho-PI3K, anti-Akt, anti-phospho-Akt, anti-mTOR, and
anti-phospho-mTOR antibodies were purchased from Cell
Signaling Technology (Danvers, MA, USA). Mouse anti-IRS-1
antibody was obtained from BD Biosciences (San Jose, CA,
USA).

Transient Transfection of miRNA Mimics. For further
confirmation of the direct effects of the regulated miRNAs on
target genes, regulated miRNA mimics based on Sanger
miRBase (synthesized by Guangzhou RiboBio Co., Ltd.
Guangzhou, China) were transfected into MEF cells using
Lipofectamine 2000 (Invitrogen) according to the supplier’s
protocol. Briefly, 2 × 105 cells cultured overnight were used for
miRNA transfection and the medium was replaced by a serum-
reduced medium (Opti-MEM (Invitrogen) prior to trans-
fection. The cells were incubated with miRNA mimics/
Lipofectamine 2000 complexes (1 (50 nM):1, v/v) in 2 mL
of Opti-MEM medium for 6 h, and then the medium was
replaced by a growth medium. The cells were cultured for 24 h
and then subjected to further analysis. The expression of
miRNAs in transfected cells was investigated by RT-QPCR as
described in Confirming miRNA Expression Using Real-Time
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Quantitative Reverse Transcriptase-Polymerase Chain Reaction
(RT-QPCR). The target genes in the transfected cells were
identified by RT-QPCR as described in Confirming Target
Genes Related to Regulated miRNAs. The expression of
proteins in transfected cells was determined by Western blot as
described in Western Blot. The cells transfected with miRNA
mimic with random sequences served as the negative controls.
Cell-Specific Effect of PEI on Regulated miRNAs. To

determine whether the regulation of miRNAs in PEI-treated
MEF cells is cell-specific or not, the PEI-treated LLC1 and
HeLa cells were subjected to RT-QPCR as described in
Confirming miRNA Expression Using Real-Time Quantitative
Reverse Transcriptase-Polymerase Chain Reaction (RT-
QPCR) for confirmation of the expression of regulated
miRNAs.
Cytotoxicity Assay. Cytotoxicity was assessed by the

detection of the activity of dehydrogenases in MEF cells. The
experimental protocols have been described in our previous
study.18

Statistical Analysis. The data is presented as mean ±
standard deviation (n = 3). The differences between untreated
control and PEI-treated samples were analyzed using Student’s
t test. P < 0.05 was considered statistically significant.

■ RESULTS
Microarray Analysis of miRNA Expression. The

cytotoxic profiles and autophagy induction of PEI in MEF
cells undergoing up to 12 h of incubation have been
investigated in a previous study.11 We selected a lower 10
μg/mL dose of PEI and longer incubation times of 12 and 24 h
in this study for the occurrence of autophagy at indicated
conditions and so as to avoid early membrane damage in PEI-
treated cells. In comparison with untreated controls, the
numbers of differentially expressed miRNAs in PEI-treated
MEF cells for 12 or 24 h incubation are shown in Table 1.

Fourteen overlapped miRNAs were up- or downregulated at
both 12 and 24 h of PEI incubation (see Supplementary Table
3 in the Supporting Information for quantitative data). The
numbers of downregulated miRNAs are much higher than
those of upregulated miRNAs in each of the indicated
treatment conditions. Similar regulated miRNAs were clustered
from the hierarchical analysis and are illustrated in Figure 1 in
the form of a heat map.
Although aberrantly expressed miRNAs, including up- and

downregulated miRNAs, are highly associated with the
regulation systems of various cellular processes, in this study,
we focused only on upregulated overlapped miRNAs after both
12 and 24 h of PEI incubation. Due to much larger numbers of
downregulated miRNAs, analyzing the outcomes of down-
regulated miRNAs would increase the complexity of the study.
Likewise, in our previous study,11 it was demonstrated that
most of the autophagy-related regulated genes in MEF cells

treated with PEI were downregulated, and this finding supports
a greater focus on the study of upregulated miRNAs due to the

Table 1. Numbers of Differentially Expressed miRNAs in
PEI-Treated MEF Cells

PEI dose (μg/mL) 10 10
incubation time (h) 12 24
upregulation 32 21
(overlapped) (14) (14)
downregulation 58 74
(overlapped) (14) (14)

Figure 1. Heat map of differentially expressed miRNAs in PEI-treated
MEF cells. The A and C columns represent untreated MEF cells for 12
and 24 h. The B and D columns show the MEF cells treated at a dose
of 10 μg/mL PEI for 12 and 24 h. Green colors indicate upregulation,
and red colors represent downregulation.

Molecular Pharmaceutics Article

DOI: 10.1021/acs.molpharmaceut.5b00329
Mol. Pharmaceutics 2015, 12, 2858−2868

2860

http://dx.doi.org/10.1021/acs.molpharmaceut.5b00329


fact that the aforementioned downregulated genes may result
from the upregulated miRNAs. In addition, overlapped
upregulated miRNAs at both 12 and 24 h incubation were
further selected because they would represent common
significant consequences of gene expression changes in PEI-
treated cells. Therefore, these 14 upregulated overlapped
miRNAs were subjected to potential pathway analysis using
DIANA miRPath v.2.0 database for further prediction of the
biological functions of regulated miRNAs and their target genes
(Table 2).
Based on comparisons of the target genes that belong to a

particular pathway with the predicted target genes of all the
reference pathways, the Fisher’s exact P-value < 0.05 was set as
a threshold for the selection of pathways potentially affected by
the miRNAs and target genes.16 Among these potential
pathways, five pathways (Wnt signaling pathway, mTOR
signaling pathway, MAPK signaling pathway, PI3K-Akt signal-
ing pathway, and p53 signaling pathway) are closely related to
mechanisms of cell death. Since these potential pathways of cell
death are complex and highly interconnected, in this study, we
focused on the mTOR signaling pathway, which is also a key
regulator of autophagy.19 There were 6 upregulated miRNAs
(mmu-miR-1224-5p, mmu-miR-3072-5p, mmu-miR-3090-5p,

mmu-miR-346-3p, mmu-miR-494-3p, and mmu-miR-712-5p)
related to the mTOR signaling pathway (Figure 2A). Among
these 6 involved upregulated miRNAs, 4 upregulated miRNAs
(mmu-miR-3072-5p, mmu-miR-346-3p, mmu-miR-494-3p, and
mmu-miR-712-5p) are also related to the p53 signaling
pathway, and this verified the interconnection of regulated
miRNAs between the mTOR and p53 signaling pathways
(Figure 2B). Therefore, the involved 6 regulated miRNAs were
subjected to further RT-QPCR validation.

Confirmation of miRNA Upregulation Using RT-QPCR.
Based on the prediction of the bioinformatic software Beacon
Designer (PREMIER Biosoft (Palo Atto, CA, USA)), mmu-
miR-3072-5p and mmu-miR-712-5p were excluded from the
above 6 regulated miRNAs for RT-QPCR confirmation due to
the easy formation of dimers between forward primers and
reverse primers. At 12 h, mmu-miR-1224-5p and mmu-miR-
494-3p were downregulated while the expressions of mmu-
miR-346-3p and mmu-miR-3090-5p were upregulated as
compared with the untreated controls (Figure 3A). Upregu-
lated mmu-miR-346-3p and mmu-miR-3090-5p were consistent
with the results from microarray analysis. At 24 h, three
upregulated miRNAs (mmu-miR-3090-5p, mmu-miR-346-3p,
and mmu-miR-494-3p) were quantitatively consistent with the

Table 2. Potential Pathway Analysis of Overlapped Upregulated miRNAs in PEI-Treated MEF Cells

overlapped
upregulated
miRNAs KEGG pathway P-value

no. of
target
genes

no. of
miRNAs
involved

mmu-miR-
1224-5p

glutamatergic synapse 1.87 × 10−9 23 7

mmu-miR-
1247-3p

long-term depression 6.23 × 10−7 12 7

mmu-miR-
2136

mucin type O-glycan
biosynthesis

9.08 × 10−7 5 3

mmu-miR-
3072-5p

proximal tubule
bicarbonate
reclamation

4.27 × 10−5 6 2

mmu-miR-
3090-5p

long-term potentiation 4.27 × 10−5 12 5

mmu-miR-
3102-5p

endocrine and other
factor-regulated
calcium reabsorption

7.80 × 10−5 10 5

mmu-miR-
346-3p

nicotine addiction 0.000115 8 6

mmu-miR-
494-3p

axon guidance 0.000133 20 7

mmu-miR-
5109

phosphatidylinositol
signaling system

0.000143 10 7

mmu-miR-
5115

retrograde
endocannabinoid
signaling

0.000143 17 8

mmu-miR-
5621-5p

Wnt signaling pathway 0.000143 22 9

mmu-miR-
711

mTOR signaling
pathway

0.000167 11 6

mmu-miR-
712-5p

GABAergic synapse 0.000174 12 6

mmu-miR-
714

Ssynaptic vesicle cycle 0.000336 11 4

MAPK signaling
pathway

0.000336 28 9

D-glutamine and D-
glutamate metabolism

0.000357 2 1

dopaminergic synapse 0.000634 17 6
glioma 0.000716 11 7
transcriptional
misregulation in
cancer

0.00083 23 9

overlapped
upregulated
miRNAs KEGG pathway P-value

no. of
target
genes

no. of
miRNAs
involved

focal adhesion 0.000988 22 9
neurotrophin signaling
pathway

0.003994 14 6

cyanoamino acid
metabolism

0.00407 2 2

melanoma 0.00407 10 8
Fc gamma R-mediated
phagocytosis

0.005169 11 7

gastric acid secretion 0.005465 10 5
VEGF signaling
pathway

0.005465 9 7

salivary secretion 0.006286 10 6
calcium signaling
pathway

0.006659 19 8

lysine degradation 0.007071 6 4
vitamin B6 metabolism 0.00731 2 2
circadian rhythm 0.008854 6 2
vascular smooth muscle
contraction

0.008981 15 7

Notch signaling
pathway

0.01008 7 6

melanogenesis 0.015804 11 8
taurine and hypotaurine
metabolism

0.015837 3 2

ErbB signaling pathway 0.024683 9 6
inositol phosphate
metabolism

0.024683 7 7

GnRH signaling
pathway

0.027878 10 6

ubiquitin mediated
proteolysis

0.02803 15 5

pancreatic secretion 0.035946 11 6
PI3K-Akt signaling
pathway

0.036213 29 9

B cell receptor signaling
pathway

0.037999 9 7

p53 signaling pathway 0.042673 8 4
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results from the microarray while mmu-miR-1224-5p was
downregulated (Figure 3B). Therefore, these three well-verified
miRNAs (mmu-miR-3090-5p, mmu-miR-346-3p, and mmu-
miR-494-3p) at 24 h were selected to identify their target genes.
Identification of Target Genes Associated with

Confirmed Upregulated miRNAs. According to DIANA
tools and KEGG pathway analysis related to the mTOR and
p53 signaling pathways, the expression levels of 12 target genes
(Rragc, Igf1, Prkaa2, Ulk2, Pten, Ccnd3-1, Ccnd3-2, Ccnd3-3,
Zmat3, Rps6ka3, Bbc3, and Cdk6) associated with the three
upregulated miRNAs (mmu-miR-3090-5p, mmu-miR-346-3p,

and mmu-miR-494-3p) were determined using RT-QPCR in
10 μg/mL PEI-treated MEF cells after 24 h incubation (Figure
4A). Four genes (Igf1, Prkaa2, Pten, and Ccnd3-3) were
downregulated, and among these four target genes, the gene
exhibiting the biggest degree of downregulation was the growth
factor Igf1. We next investigated the expressions of these four
genes in 10 μg/mL PEI-treated MEF cells at 12 h using RT-
QPCR (Figure 4B). Compared to the untreated controls, three
genes (Igf1, Ccnd3-3m, and Pten) were downregulated while
Prkaa2 was slightly upregulated. This may indicate that some of
the gene regulation in PEI-treated MEF cells is dynamically

Figure 2. Prediction of miRNAs and their target genes involved in (A) mTOR signaling pathway and (B) p53 signaling pathway. The figures of the
above pathways are based on the KEGG database.
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controlled. However, the downregulation of Igf1 in 10 μg/mL
PEI-treated MEF cells at 12 h was not consistent with the
upregulation of the gene found using microarray in a previous
study.11

Verification of Regulated miRNA-Target Gene Inter-
action. To further verify the regulated miRNA−target gene
interaction, MEF cells were transfected with three miRNA
mimics (mmu-miR-3090-5p, mmu-miR-346-3p, and mmu-miR-
494-3p) and then the expression levels of the four target genes
(Igf1, Prkaa2, Pten, and Ccnd3-3) were determined using RT-
QPCR (Figure 5). The increases of intracellular miRNA for
each of the three miRNA were observed in transfected MEF
cells, through which successful transfection by these three
miRNA mimics was demonstrated (Figure 5A). The gene
expression of Ccnd3-3 in MEF cells transfected with these three
miRNA mimics was not significantly different from that in the
negative controls (Figure 5B). The expression levels of Igf1
were significantly lower in MEF cells transfected with the three
miRNA mimics compared to the negative controls (Figure 5C).
The biggest decrease of Igf1 gene expression came from the
interaction of an mmu-miR-346-3p mimic. However, the
expression levels of Prkaa2 in MEF cells transfected with the
three miRNA mimics were not statistically distinguishable from
the negative controls (Figure 5D). MEF cells transfected with
the three miRNA mimics induced the upregulation of Pten
(Figure 5E). Therefore, only the decrease of Igf1 gene
expression was associated with the upregulation of mmu-miR-
3090-5p, mmu-miR-346-3p, and mmu-miR-494-3p.

Western Blot of Igf1. The hormone Igf1 (the insulin-like
growth factor 1, also called somatomedin C) regulates various
important cellular responses in biological systems such as cell
proliferation and differentiation, cell death and survival, and
migration.20 The protein expression levels of Igf1 in PEI-treated
MEF cells are shown in Figure 6.
As compared with untreated MEF cells, the protein

expression levels of Igf1 were decreased in PEI-treated MEF
cells at 12 and 24 h. Also, as observed in Figure 7, the protein
expression levels of Igf1 were decreased in MEF cells
transfected with three miRNA mimics (mmu-miR-3090-5p,
mmu-miR-346-3p, and mmu-miR-494-3p) as compared with
negative controls. Therefore, the decreases in Igf1 protein
expression were consistent with the downregulation of gene
expressions of Igf1 in MEF cells treated with PEI or transfected
with three miRNA mimics (mmu-miR-3090-5p, mmu-miR-
346-3p, and mmu-miR-494-3p).

Cell-Specific Effect of PEI on Regulated miRNAs. To
check whether PEI-induced upregulation of these miRNAs in
cells is cell-specific or not, we examined the expression levels of
four miRNAs (mmu-miR-3090-5p, mmu-miR-346-3p, mmu-
miR-1224-5p, and mmu-miR-494-3p) in LLC1 cells and HeLa
cells treated with and incubated in PEI for 12 or 24 h (Figure
8). For 12 and 24 h of incubation, the expression levels of these
four miRNAs were downregulated in PEI-treated LLC1 cells
(Figures 8A and 8B).
This indicates that the effects of PEI on regulated miRNAs in

MEF cells are different from those in LLC1 cells. We next

Figure 3. Confirmation of microarray results in PEI-treated MEF cells at (A) 12 h and (B) 24 h by RT-QPCR. The data from microarray are
represented with mean values, and the data from RT-QPCR are shown as means ± standard deviation (n = 3). *P < 0.05 vs untreated controls.

Figure 4. Quantification of target genes in PEI-treated MEF cells at (A) 24 h or (B) 12 h by RT-QPCR. Bars represent means ± standard deviation
(n = 3). *P < 0.05 vs untreated controls.
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investigated the expression levels of these four miRNAs in PEI-
treated HeLa cells, which are cells derived from a human rather
than from mice. The fold changes of mmu-miR-346-3p were up
to approximately 4 at 12 h and slightly above 3 at 24 h in PEI-
treated HeLa cells, whereas the fold changes of the other three
miRNAs were not significant (Figures 8C and 8D). Therefore,
PEI also induced upregulated mmu-miR-346-3p in both HeLa
and MEF cells.

The Effects of PEI and miRNA Mimics on the mTOR
Signaling Pathway and Autophagy. To verify whether the
mTOR signaling pathway and autophagy are involved in the
effects of PEI treatment on MEF cells, Western blot analysis of
key proteins involved in the mTOR signaling pathway and
autophagy was conducted (Figure 9). PEI treatment resulted in
downregulation of mTOR, PI3K, and AKT phosphorylation as
compared with untreated controls for 24 h incubation (Figure
9A). The expression level of IRS-1 was also downregulated in

Figure 5. Quantification by RT-QPCR of miRNA (A) and target genes ((B) Ccnd3-3, (C) Igf1, (D) Prkaa2, and (E) Pten) in PEI-treated MEF cells
transfected with miRNA mimics. Cells transfected with a random sequence miRNA mimic served as negative controls. Bars represent means ±
standard deviation (n = 3). *P < 0.05 vs negative controls.
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PEI-treated cells at 24 h (Figure 9A). Likewise, as compared
with negative controls, MEF cells transfected by these three
miRNA mimics also induced the decreases of IRS-1 and
phosphorylation of mTOR, PI3K, and AKT (Figure 9B). This
suggests that the mTOR signaling pathway is involved in both
PEI-treated cells and transfected cells through these miRNA
mimics.
Next, we investigated autophagic activity in cells by

monitoring the expression level of a marker protein LC3.
The ratio of LC3II/LC3I was significantly increased in PEI-
treated MEF cells for 12 and 24 h incubation, indicating that
autophagy was induced in PEI-treated cells (Figure 9C).
As compared with negative controls, the increases of LC3II/

LC3I and the decreases of p62 and beclin 1 were observed in
MEF cells transfected with these three miRNA mimics (Figure
9D). The p62 protein (SQSTM1/sequestosome 1) belongs to
the adaptor molecules involved in inducing autophagy.
Polyubiquitin-binding p62 protein binds to LC3 and is
degraded by autophagy.21 Also, beclin 1 (the mammalian
orthologue of yeast Atg6) is closely related with interactions
between apoptosis and autophagy.22 Our results suggested that
these three miRNAs are involved in molecular mechanisms of
autophagy. In our previous study, the decreases of p62 and
beclin 1 have been demonstrated in PEI-treated cells.11

The Effects of PEI and miRNA Mimic Treatment on
Cytotoxicity. To clarify cell viability, the intracellular
dehydrogenase activity in mitochondria was assessed. As

Figure 6. Western blot analysis of Igf1 in PEI-treated MEF cells. β-
Actin was the loading internal control. The data shown were from one
representative experiment among three similar experiments. The ratios
of band density were calculated with AlphaImager 2200 software.

Figure 7. Western blot analysis of Igf1 in MEF cells transfected with
random sequence miRNA mimic as negative control and three miRNA
mimics (mmu-miR-3090-5p, mmu-miR-346-3p, and mmu-miR-494-
3p). β-Actin was the loading internal control. The data shown are from
one representative experiment among three similar experiments. The
ratios of band density were calculated with AlphaImager 2200
software.

Figure 8. Quantification of miRNA expression in PEI-treated (A and B) LLC1 or (C and D) HeLa cells at 12 and 24 h by RT-QPCR. The data are
shown as means ± standard deviation (n = 3). *P < 0.05 vs untreated controls.
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compared with untreated cells, cell viability time-dependently
decreased in PEI-treated cells at a dose of 10 μg/mL (Figure
10A). For cells transfected with these three miRNA mimics, cell
survival moderately decreased as compared with the negative
controls (Figure 10B).

■ DISCUSSION

Various molecular mechanisms of cell death induced by PEI or
PEI/DNA complexes in vitro or in vivo have been observed, but
these interpretations have not proven consistently conclusive.
After treatment of PEI or PEI/DNA complexes, the genes or
proteins related to apoptosis have been demonstrated in vitro
and in vivo.7,9,23−25 Recently, PEI and PEI/RNA (DNA)
complexes have been shown to induce autophagic cell death in
various cells.11,18,26−28 In a previous study applying autophagy-

related gene expression analysis, we found that autophagy and
apoptosis are closely related in the PEI-induced mechanism of
cell death.11,18 However, no study of the effect of PEI on the
regulation of miRNAs, which can target these regulated genes
of cell death, has been conducted thus far.
In this study, we used more toxic free PEI instead of less

toxic PEI/nucleic acid complexes to investigate miRNA
expression in cells because we wanted to test the worst-case
scenario for the cytotoxicity of PEI. In addition to causing
greater cytotoxicity, free PEI also prevented particle aggregation
of polyplexes and enhanced transfection efficiency in vitro.29,30

Among these three upregulated miRNAs, miR-494-3p has been
reported to suppress the progression and metastasis of prostate
cancer.31 Overexpressed miR-494-3p has been shown to inhibit
the growth and paracrine function of mesenchymal stem cells

Figure 9. Western blot analysis of protein expression (IRS-1, phosphorylated PI3K (p-PI3K), PI3K, phosphorylated mTOR (p-mTOR), mTOR,
phosphorylated Akt (p-AKT), and AKT) related to the mTOR signaling pathway in cells (A) treated with PEI or (B) transfected with three miRNA
mimics (mmu-miR-3090-5p, mmu-miR-346-3p, and mmu-miR-494-3p) and negative controls. LC3 expression in cells treated with PEI (C). LC3,
p62, and beclin 1 expressions in cells transfected with three miRNA mimics (mmu-miR-3090-5p, mmu-miR-346-3p, and mmu-miR-494-3p) and the
negative control (D). β-Actin was the loading internal control. The data shown are from one representative experiment among three similar
experiments. The ratios of band density were calculated with AlphaImager 2200 software.
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by targeting of Cdk6, Ccnd1, and VEGF.32 Furthermore, a
mouse model has revealed that miR-494-3p is related to glioma
proliferation and invasion.33 In myeloid-derived suppressor
cells, enhanced expression of miR-494-3p has been found to
target the Pten gene and activate the Akt pathway.34 In this
study, however, upregulated Pten gene was identified by the
transfection of miR-494-3p mimic in MEF cells (Figure 5E).
Autophagy induction has been shown to inhibit the mTOR

signaling pathway.19 Cationic Starburst polyamidoamine
dendrimers have also been demonstrated to induce autophagic
cell death via inhibition of the mTOR signaling pathway, a
finding which is consistent with the current study.35 PEI/DNA
complexes have been demonstrated to enter various cells in
endosomes and to activate the formation of tubulovesicular
autophagosomes from small autophagosomes, and gene
expression has been shown to be higher in atg5−/− cells treated
with PEI/DNA complexes, indicating that tubulovesicular
autophagosomes can be considered as a new barrier for gene
delivery.28 Furthermore, the transfection efficiency of PEI/
DNA complexes has been shown to be affected by autophagy
modulation in mouse fibroblasts.36 The transfection efficiency
was reduced by applying autophagy inhibitor 3-MA, whereas
the transgene expression was enhanced by adding autophagy
inducer rapamycin.36 This indicates that the regulation of
autophagy plays an important role in polyplex-mediated gene
delivery. Also, the protective role of autophagy in PEI-induced

cell death has previously been reported, while the fact that
autophagy accelerates cell death in both hepatic and nephritic
cell lines after treatment with PEI has also been demon-
strated.11,18,27 Despite autophagy induction and the decreases
of cell viability that have been observed in MEF cells
transfected by these three miRNA mimics, the exact role in
the molecular mechanisms of cell death induced by these three
miRNAs needs to be further clarified.

■ CONCLUSION
Presently, little is known about the effects of cationic polymers
on the regulation of miRNAs related to cell death mechanisms.
According to the analysis of the mTOR pathway, three
miRNAs (mmu-miR-3090-5p, mmu-miR-346-3p, and mmu-
miR-494-3p) were upregulated in MEF cells treated with PEI
and incubated for 24 h. We further demonstrated that these
three upregulated miRNAs resulted in the decrease of the target
gene growth factor Igf1. The protein expression levels of
decreased Igf1 were consistent with its gene expressions in
MEF cells treated with PEI or transfected with three
upregulated miRNA mimics. However, these three upregulated
miRNAs are not all cell-specific. We also demonstrated that the
mTOR signaling pathway is inhibited by autophagy induction
and that cell viability decreases in cells treated with PEI or
transfected with these three miRNA mimics. Our data
suggested that PEI may affect the regulation of miRNAs in cells.
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Exploring MicroRNA Expression Profiles Related to Cell Death Pathways in Mouse Embryonic 
Fibroblast Cells Treated with Polyethylenimine 

Jung-hua Kuo1, Ming-shiou Jan2, and Chia-wei Lin2 
1 Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;  

2 Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan 
kuojunghua@yahoo.com.tw 

 
Purpose: In order to better understand the toxicology of poly(ethylenimine) (PEI) in microRNA (miRNA) 
expression levels, we explored miRNA expression profiles related to cell death mechanisms in mouse 
embryonic fibroblast (MEF) cells treated with PEI by applying microarray analysis.  
 
Methods: The miRNA microarrays were carried out in Mouse & Rat miRNAOneArray® v5 (Phalanx Biotech 
Group, Hsinchu, Taiwan). MEF cells were grown overnight at 2  106 cells per 10-cm dish and then were 
treated with 10 g/mL PEI for 12 and 24 h. Untreated cells after 12 or 24 h incubation were used as negative 
controls. The pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database.  
 
Results: In this study, we focused only on up-regulated overlapped miRNAs after both 12 h and 24 h of PEI 
incubation. 14 up-regulated overlapped miRNAs were subjected to potential pathway analysis for further 
prediction of the biological functions of regulated miRNAs (Table 1). Five pathways (Wnt signaling pathway, 
mTOR signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, and p53 signaling pathway) 
are closely related to mechanisms of cell death. 

Overlapped up-regulated miRNAs KEGG pathway P-value 
Number of 
miRNAs 
involved 

mmu-miR-1224-5p 
mmu-miR-1247-3p 
mmu-miR-2136 
mmu-miR-3072-5p 
mmu-miR-3090-5p 
mmu-miR-3102-5p 
mmu-miR-346-3p 

mmu-miR-5109 
mmu-miR-5115 
mmu-miR-5621-5p 
mmu-miR-711 
mmu-miR-712-5p  
mmu-miR-714 
mmu-miR-494-3p 

Wnt signaling pathway 0.000143 9 
mTOR signaling pathway 0.000167 6 
MAPK signaling pathway 0.000336 9 
PI3K-Akt signaling pathway 0.036213 9 
p53 signaling pathway 0.042673 4 
                                                                                                                  Table 1 Potential pathway analysis of overlapped up-regulated miRNAs in PEI-treated MEF cells 

   
Conclusions: Our data suggested that PEI may affect the regulation of miRNAs in target cells and various 
pathways of cell death involved were identified. 
Acknowledgements: This work was supported by grant NSC 102-2221-E-041-013-MY3 from Ministry of 
Science and Technology, R.O.C.  
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2. Bartel D. P.  Cell. 2009 (136) 215-233. 
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