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Abstract
This study aims to construct a neural network to predict weaning difficulty among planned extubation patients in intensive care units.
This observational cohort study was conducted in eight adult ICUs in a medical center about adult patients experiencing planned

extubation.
The data of 3602 patients with planned extubation in ICUs of Chi-Mei Medical Center (from Dec. 2009 through Dec. 2011) was

used to train and test an artificial neural network (ANN) model. The input features contain 47 clinical risk factors and the outputs are
classified into three categories: simple, difficult, and prolonged weaning. A deep ANN model with four hidden layers of 30 neurons
eachwas developed. The accuracy is 0.769 and the area under receiver operating characteristic curve for simple weaning, prolonged
weaning, and difficult weaning are 0.910, 0.849, and 0.942 respectively.
The results revealed that the ANN model achieved a good performance in prediction the weaning difficulty in planned extubation

patients. Such a model will be helpful for predicting ICU patients’ successful planned extubation.

Abbreviations: ANN = artificial neural network, APACHE-II = acute physiology and chronic health evaluation II, AUROC = area
under receiving operating characteristic, CI = confidence interval, DT = decision trees, ICU = intensive care unit, LDA = linear
discriminant analysis, MEP = maximum expiratory pressure, MIP = maximum inspiratory pressure, NB = Naïve Bayes, PaCO2 =
arterial carbon dioxide tension, PEEP = positive end expiratory pressure, ROC = receiving operating characteristic, RSI = rapid
sallow-breathing index, SBTs = spontaneous breathing trials, SE = standard error, SeLU = scaled exponential linear unit, SVM =
support vector machines, TISS = therapeutic intervention scoring system.

Keywords: artificial neural network, planned extubation, prediction weaning difficulty

1. Introduction

Endotracheal intubation is a process commonly used in intensive
care unit (ICU) patients. On average, 39%of ICU patients require
endotracheal intubation with ventilatory support.[1] Though
required, prolonged ventilatory support can increase the risk of

certain complications, such as ventilation-associated pneumo-
nia.[2] The extubation of ventilated patients as early as possible is
therefore desired through weaning.[3] Weaning is the process of
gradually removing ventilatory support in a patient by the
process of extubation.[4] The appropriate time to start the
weaning process is determined by clinicians to avoid prolonged
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ventilatory support.[5] Therefore, weaning profiles and extuba-
tion predictions are very important in assessing a patient
undergoing endotracheal intubation.
In 2005, during the international consensus conference on

weaning from mechanical ventilation, a patient classification
system according to the weaning process was proposed.
According to the duration of weaning and the number of
spontaneous breathing trials (SBTs) preceding successful extu-
bation, patients are classified into three groups: simple, difficult,
and prolonged weaning.[4] This weaning classification has been
evaluated in clinical practice.[6,7] In the studies, the prolonged
weaning group was associated with increased mortality in the
ICU.
In recent years, outcome prediction models using artificial

neural network (ANN) and multivariable logistic regression
analysis have been developed in many areas of health care
research.[8] There is a growing amount of publications
regarding the use of machine learning algorithms in ICU
subjects, particularly in the prediction of sepsis as well.[9,10,11]

ANNs are computer-based algorithms that mimic the habits
and structures of neurons and can derive outcomes based on
input data. With a clear classification system for patient
weaning profiles, the aim of our study is to utilize ANNs to
categorize patients into them to predict their individual
weaning difficulty.

2. Materials and methods

2.1. Study design and setting

This study was a retrospective analysis using machine learning
method based on the data collected based on a previous
prospective study, which was conducted in eight adult ICUs of
Chi-Mei Medical Center from December 2009 through Decem-
ber 2011. This is a 1288-bed tertiary medical center with 96 ICU
beds: 48 medical ICU beds, 9 cardiac beds, and 39 surgical beds
for adults. Every year, more than 5000 patients are admitted to
the ICU in average. The ICU is covered by intensivists, senior
residents, nurses, respiratory therapists, dietitians, physical
therapists, and clinical pharmacists. The workload is the same
in every shift and patient-to-nursing staff ratios of 2:1. There
were no differences in nursing experience by shift. Each
respiratory therapist was responsible for fewer than 10 patients
at the same time on every shift. The ICU team made rounds at
least once daily, and the physician decided the timing of initiating
weaning process.
During the study period, a total of 3602 patients experiencing

planned extubation were enrolled in this study. According to the
weaning process classifications, all patients were separated into
three groups: simple, difficult, and prolonged weaning. The
definition of simple weaning is a successful extubation after the
first SBT; an SBT trial is defined as a low-pressure support with
�8cm H2O, or a T-piece trial.[4] Difficult weaning is defined by a
successful extubation after two or three SBTs, or a successful
extubation within seven days of the first SBT. Prolonged weaning
is classified by patients not weaned after more than three SBTs, or
a weaning process greater than seven days. If the patients
displayed unstable hemodynamics or desaturation during SBT
trial, we would stop the trial. Either adjusting a higher support
level or shifting to control mode would be performed for failed
SBT. All patients’ demographic and clinical information,
laboratory results, comorbidities, severity scores, mortality,

and lengths of stays for both ICU and hospital were collected
for analysis. The data were retrospectively collected before
planned extubation after passed SBT and then analyzed.
Therefore, informed consent was specifically waived and the
study was approved by the Institutional Review Board of ChiMei
Medical Center (IRB: 10706-009).

2.1.1. Constructing the training data.All features are extracted
from the original dataset. After normalizing and cleaning the
data, there are 47 input features and three outputs, each
representing a prediction of simple, difficult, and prolonged
weaning. The 47 input features include subject age, gender,
scoring systems as Acute Physiology and Chronic Health
Evaluation II (APACHE-II), Therapeutic Intervention Scoring
System (TISS) and Glasgow Coma Scales, comorbidities,
etiology of intubation and respiratory failure, pre-extubation
parameters, weaning methods and parameters, and pre-
extubation data. The basis features are listed in Table 1 in
the Supplemental Digital Content, http://links.lww.com/MD/
D264. The data is then split into training and test sets at an
approximately 9:1 ratio.[12]Table 1 shows the data allocation
between the test and train sets.

2.1.2. Algorithm and training.We used a multilayer perceptron
deep neural network to train the data. To select the hyper-
parameters, optimizers, and loss function with the best perfor-
mance, k-fold cross-validationwith a k value of 10 is used over 10
epochs.[12]

After the model selection process of comparing the
performance of different models with k-fold cross-validation,
the best-performing model consisted of one input layer of 47
dimensions, 4 hidden layers of 30 dimensions each, and an
output layer of 3 dimensions. The network was trained using
stochastic gradient descent and optimized using Adam with
Nesterov Momentum.[13] The input and hidden layers used
the Scaled Exponential Linear Unit (SeLU) activation function,
while the output layer used the Softmax activation func-
tion.[14] Dropout of 20% was applied at the input layer and
50% at the output layer for regularization.[15] The neuron
weights were initialized using normalized He initialization.[16]

Since the ANN aims to solve a multi-class classification
problem, the categorical cross-entropy function was used as
the loss function. The model generates a probability for each
category, and the patient is assigned to the category with the
highest probability.
The software was implemented using Python (version 3.7.0)

with the scikit-learn library (version 0.19.1).[17] The ANNmodel
was created and trained with the Tensorflow framework (version
1.9.0).[18]

2.1.3. Statistical analyses. Mean values, standard deviations,
and group sizes were used to summarize the results for
continuous variables. Kruskal–Wallis ANOVA was used for
comparison of continuous variables with Dunn’s test for post hoc
testing. The Chi-squared test for trends was used to compare
categorical variables between the three weaning categories. A P
value < .05 was considered statistically significant. Statistical
analysis of the data was done with SPSS 21.0 forWindows (SPSS,
Inc., IL).
The ANN performance was measured using the area under

Receiving Operating Characteristic (ROC) curve. The area under
ROC curve (AUROC) of the neural network was compared
against the AUC of variables that had a significant difference in
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Table 1

Baseline characteristics of the 3602 patients who started weaning, stratified by weaning category.

Variable
Simple weaning
n=2613 (72.6%)

Difficult weaning
n=678 (18.8%)

Prolonged weaning
n=311 (8.6%) P value

Age (yr) 61.7±16.3 69.0±15.6 73.0±14.5 .001
≧65 years old 1186 (45.4%) 443 (65.3%) 231 (74.3%) <.001
Males 1680 (64.3%) 443 (65.3%) 195 (62.7%) .718
Internal Medicine 560 (21.4%) 430 (63.4%) 238 (76.5%) <.001
APACHE II 14.5±6.7 20.6±6.8 22.8±6.9

∗
<.001

TISS Scale 26.9±7.9 28.2±7.6 27.2±7.5 #<.001
COMA Scale 12.7±3.2 10.5±3.6 9.5±3.4 <.001
Number of comorbidities 1.1±0.9 1.3±0.9 1.4±1.0

∗
<.001

Type of comorbidity
Chronic heart failure 471 (18.0%) 139 (20.5%) 70 (22.5%) .079
Chronic respiratory failure 162 (6.2%) 86 (12.7%) 37 (11.9%) <.001
Chronic renal failure 291 (11.1%) 86 (12.7%) 42 (13.5%) .299
Chronic liver disease 52 (2%) 17 (2.5%) 10 (3.2%) .312
Diabetes 674 (25.8%) 263 (38.8%) 133 (42.8%) <.001
Neurological disease 594 (22.7%) 226 (33.3%) 102 (32.8%) <.001
Active cancer disease 647 (24.8%) 98 (14.5%) 38 (12.2%) <.001
Immunocompromised 5 (0.2%) 1 (0.2%) 0 (0%) .730

Etiology of Intubation
Hypoventilation 218 (8.3%) 87 (12.8%) 37 (11.9%)

∗
.001

Airway obstruction 90 (3.4%) 41 (6.1%) 22 (7.1%)
∗
<.001

Pneumonia 141 (5.4%) 199 (29.4%) 120 (38.6%) <.001
Cardiogenic pulmonary edema 163 (6.2%) 66 (9.7%) 27 (8.7%)

∗
.004

Septic shock 84 (3.2%) 80 (11.8%) 35 (11.3%)
∗
<.001

Chronic obstructive pulmonary disease 50 (1.9%) 30 (4.4%) 17 (5.5%)
∗
<.001

Post-operation 1866 (71.4%) 174 (25.7%) 54 (17.4%) <.001
Etiology of Respiratory failure
Pulmonary system 415 (15.9%) 259 (38.2%) 149 (47.9%) <.001
Cardiovascular system 636 (24.3%) 92 (13.6%) 36 (11.6%)

∗
<.001

Neurological system 796 (30.5%) 125 (18.4%) 51 (16.4%)
∗
<.001

Renal system 196 (7.5%) 67 (9.9%) 20 (6.4%) .075
Gastrointestinal system 357 (13.7%) 94 (13.9%) 42 (13.5%) .984
Other system 213 (8.2%) 42 (6.2%) 13 (4.2%) .016
Duration of mechanical ventilation (hours) 65.5±88.6 170.6±108.5 325.6±165.1 <.001

Pre-extubation parameter
RSI 49.3±28.3 60.4±28.2 70.1±39.1 <.001
MIP (cmH2O) 38.3±14.2 36.6±13.1 35.6±14.4

∗
<.017

MEP (cmH2O) 63.0±28.5 56.2±31.1 50.5±28.7 <.016
Weaning methods
T-piece 106 (4.1%) 488 (72.0%) 266 (85.5%) <.001
Pressure support≦8cmH2O 890 (34.1%) 549 (81.0%) 237 (76.2%) <.001
SBT 994 (38.0%) 661 (97.5%) 307 (98.7%) <.001

Number of attempts weaning
T-piece 0±0.2 1±0.8 3.2±2.4 <.001
Pressure support≦8cmH2O 0.3±0.5 0.9±0.5 0.9±0.7

∗
<.001

SBT 0.4±0.5 1.9±0.7 4.1±2.4 <.001
Pre-extubation data
FiO2 27.8±3.8 26.6±2.9 26.3±2.5

∗
<.001

Pressure level (cmH2O) 9.5±1.6 8.4±1.1 8.3±1.2
∗
<.001

PEEP (cmH2O) 5.1±0.5 5.1±0.5 5.1±0.4 ns
Minute ventilation (L/min) 7.8±2.7 7.9±2.4 8.0±2.4 ns
Heart rate 86.9±16.1 85.2±17.0 87.9±15.9 &.041

Mean arterial pressure 96.8±16.5 96.1±15.9 93.8±15.2 $.006
Respiratory rate 16.2±5.0 17.8±5.3 19.5±5.1 <.001
pH 7.435±0.055 7.453±0.048 7.465±0.044 <.05
PaCO2 (mmHg) 36.9±5.8 38.9±6.5 39.8±6.9

∗
<.003

PaO2 (mmHg) 110.9±45.0 93.0±26.8 90.9±22.9
∗
<.001

PaO2/FiO2 (mmHg) 367.9±103.5 339.8±91.5 338.8±92.2
∗
<.001

Hemoglobin (g/dL) 11.6±2.0 10.6±1.6 10.4±1.5
∗
<.001

Hemotocrit (%) 34.8±6.5 32.4±6.8 31.6±6.8
∗
<.001

BUN (mg/dL) 22.7±18.6 30.7±24.8 36.9±33.6 <.001
Cr (mg/dL) 1.66±2.09 1.77±2.00 1.72±2.02 ns

(continued )
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terms of outcomes. The AUCwas also compared against the ideal
value of one.[19]

3. Results

3.1. Results of clinical data

Of the 3602 patients included in the study, 50.9%were male and
49.1%were female. Patients were classified according to weaning
classification: 2613 patients (72.6%) as simple weaning, 678
patients (18.8%) as difficult weaning, and 311 (8.6%) as
prolonged weaning. The mean age of simple weaning group is
61.7 years, the mean age of difficult weaning group is 69.0 years,
while the mean age of prolonged weaning group is 73.0 years.
The mean APACHE II score in difficult group is 20.6 and in

prolonged group is 22.8, and both are significantly higher than
that of simple weaning group, which is 14.5 (P< .001). The most
common comorbidity is diabetes in the prolonged weaning group
(42.8%) and in the difficult weaning group (38.8%). See Table 1
in the Supplemental Digital Content, http://links.lww.com/MD/
D264 for the full demographic and clinical characteristics ICU
patients with planned extubation. The rate of extubation failure
is 5.1% (185/3602).

3.2. Results of ANN

The accuracy of the ANN model is 0.769, and weighted k-fold
cross-validation accuracy is 0.604. Figures 1 to 3 show the ROC
curve of the artificial neural network, rapid shallow-breathing
index (RSI), maximum expiratory pressure (MEP), and

Figure 1. Receiving operating characteristic (ROC) curve of artificial neural network (ANN), rapid shallow breathing (RSI), maximum expiratory pressure (MEP), and
maximum inspiratory pressure (MIP) for simple weaning.

Table 1

(continued).

Variable
Simple weaning
n=2613 (72.6%)

Difficult weaning
n=678 (18.8%)

Prolonged weaning
n=311 (8.6%) P value

Na (meq/L) 138.9±4.3 139.6±5.3 139.7±5.6
∗
<.017

K (meq/L) 3.8±0.5 3.9±0.5 4.0±0.5 <.022
Ca (mg/dL) 7.9±1.0 7.9±0.8 7.9±0.8 ns
P (mg/dL) 3.4±1.5 3.5±1.6 3.5±1.5 ns
Albumin (g/dL) 3.0±0.6 2.7±0.6 2.5±0.5 <.008

APACHE-II= acute physiology and chronic health evaluation II, MEP=maximum expiratory pressure, MIP=maximum inspiratory pressure, PEEP=positive end expiratory pressure, RSI= index of rapid sallow
breathing, SBT= spontaneous breathing trial, TISS= therapeutic intervention scoring system.
∗
Simple vs difficult P < .01, simple vs prolonged P < .001.

# Simple vs difficult P< .01.
$ Simple vs prolonged P< .01.
& Difficult vs prolonged P< .01.
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Figure 3. Receiving operating characteristic (ROC) curve of artificial neural network (ANN), rapid shallow breathing (RSI), maximum expiratory pressure (MEP), and
maximum inspiratory pressure (MIP) for difficult weaning.

Figure 2. Receiving operating characteristic (ROC) curve of artificial neural network (ANN), rapid shallow breathing (RSI), maximum expiratory pressure (MEP), and
maximum inspiratory pressure (MIP) for prolonged weaning.
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maximum inspiratory pressure (MIP) on all patient data for
simple, prolonged, and difficult weaning respectively. Tables 2
and 3 show the AUROCs of all 3 weaning types for the ANN
model and control predictors respectively. The AUROCs were
calculated across all data.

4. Discussion

In this study, we demonstrated that a neural network model can
be a good predictor for determining weaning classifications. As
extubation failure remains prevalent in clinical practice, with
reintubation rates reporting up to 19%,[20] it is important to
determine patients’ weaning profiles. In common clinical
practices, the extubation decision is based on a comprehensive
assessment that considers a patient’s clinical condition, arterial
blood gases results, ventilator settings and weaning profiles.[5]

Despite this comprehensive assessment, extubation decisions
carries risks of misjudgments that can be fatal. The model created
in this study can aid in making decisions for patient extubation
with laboratory data.
Additionally, the usage of ANNs in mortality prediction has

been recorded since 2006, with its effectiveness noted. The ANN
used in the 2006 study concluded that ANNmortality prediction
outperformed traditional methods of prognosis assessment.[21]

With improved computing power since 2006, ANN models have
significantly improved; as such, the ANN used in this study
corroborates with the findings and can successfully categorize
data into the preset categories for weaning prediction. We found
that the collective predictive performance of ANN is better than
several commonly used individual parameters in extubation
assessment – Index of RSI, MIP, andMEP. This is consistent with
a previous study[8] where the proposed ANN model had better
discrimination than existing predictors, such as the RSI andMIP,

in predicting successful extubation. This shows the widespread
potential for ANN models in multiple scenarios wherever
categorization and prediction is necessary.
Moreover, previous studies attempted to find appropriate

predictors of weaning difficulty and presented different findings.
These findings include older age, lower mean arterial pres-
sure,[22,23] arterial carbon dioxide tension (PaCO2) under SBT
and heart rate increase,[7] lower BUN,[24] MIP and PaCO2,

[25] as
well as the incorporation of respiratory rate, RSI, MIP, and
APACHE II scores[26] to aid in the prediction of weaning
difficulty. In this study, all the aforementioned factors were
included in the ANN model. Thus, the ANN model developed in
this study can provide an accurate prediction based on the
comprehensive information.
The usage of ANNs in the prediction of patient outcome in

ventilator weaning has also been documented. However, the lack
of patient data is noted to be a limitation of the studies. Arizmendi
et al ran an ANN with 149 patients for the extubation process
with a successful predictive capability but failed to categorize
patient diagnosis criteria due to the low number of data
points.[27] For our study, using our ANN model with 3602
patient data points, the classification of patient weaning
outcomes can be performed before the decision to extubate.
The weaning classifications can even be used to further predict
mortality.[7] This allows for a tool to aid in considering
extubation decisions for physicians that can ultimately prevent
otherwise dangerous extubation procedures.
The ANN built in this study uses the opensource TensorFlow

framework, which allows for easy reproduction of the study;
further studies can be reproduced using differing data for a more
comprehensive overview. Besides neural networks, other ma-
chine learning models such as Gaussian Naïve Bayes (NB),
Decision Trees (DT), Linear Discriminant Analysis (LDA), and
Support Vector Machines (SVM) can also be studied in the
future.

5. Conclusions

Extubation strategies in ventilated ICU patients must be
thoroughly planned. Previously, the clinical classifications of
patient weaning difficulty are used as a characteristic of a patient,
rather than assisting in the formulation of a strategy. The ANN
used in this study showed that the patient classification can be
accurately predicted before the weaning process. This allows the
consideration of a patient weaning difficulty prior to the
extubation procedure worthwhile.
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