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Abstract

Background

Phosphate burden in chronic kidney disease (CKD) leads to elevated serum fibroblast fac-

tor-23 (FGF-23) levels, secondary hyperparathyroidism and chronic kidney disease-mineral

bone disorder (CKD-MBD). However dissociated hyperphosphatemia and low serum FGF-

23 concentrations have been observed in experimentally parathyoridectomized rats. The

relationships between serum mineral, hormone, and bone metabolism may be altered in the

presence of CKD. The aim of our study was to investigate whether a consistent relationship

existed between serum FGF-23 levels, specific serum biochemical markers, and histomor-

phometric parameters of bone metabolism in a parathyroidectomized CKD animal model.

Results

Sprague Dawley rats were divided into 3 groups: parathyroidectomy (PTX) and CKD (PTX

+CKD, 9 rats), CKD without PTX (CKD, 9 rats), and neither PTX nor CKD (sham-operated

control, 8 rats); CKD was induced by partial nephrectomy. At 8 weeks after partial nephrec-

tomy, serum biomarkers were measured. Bone histomorphometries of the distal femoral

metaphyseal bone were analyzed. The mean serum FGF-23 levels and mean bone forma-

tion rate were the highest in the CKD group and the lowest in the PTX+CKD group. Bone

volume parameters increased significantly in the PTX+CKD group. Pearson’s correlation

revealed that serum FGF-23 levels associated with those of intact parathyroid hormone,
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phosphate, collagen type I C-telopeptide, and calcium. Univariate linear regression showed

that serum FGF-23 values correlated with bone formation rate, bone volume, and osteoid

parameters. Stepwise multivariate regression analysis revealed that circulating FGF-23 val-

ues were independently associated with bone volume and thickness (β = -0.737; p < 0.001

and β = -0.526; p = 0.006, respectively). Serum parathyroid hormone levels independently

correlated with bone formation rate (β = 0.714; p < 0.001) while collagen type I C-telopeptide

levels correlated with osteoid parameter.

Conclusion

Serum FGF-23 levels independently correlated with bone volume parameters in rats with

experimentally induced CKD.

Introduction
In chronic kidney disease, CKD-mineral and bone disorder (CKD-MBD) is a disturbance in
mineral metabolism and bone remodeling. Subsequently, vascular calcification may develop.
CKD-MBD affects many patients who have CKD and increases their morbidity and mortality
[1–4]. The onset of CKD-MBD is considered to be caused by an abnormality in mineral metab-
olism when renal function declines. Subsequently, hormone dysregulation, osteodystrophy,
and cardiovascular complication appear.

Fibroblast growth factor23 (FGF-23) is a regulator of phosphate metabolism and is elevated
in patients with CKD [5]. The hormone FGF-23 is derived mainly from osteocytes in bone
[6,7] and acts on proximal renal tubules to maintain serum phosphate homeostasis [8,9] by
excreting excess phosphate through the kidney [10,11]. In CKD, phosphate retention occurs as
functional renal mass diminishes; this stimulates FGF-23 synthesis to increase renal excretion
of excess phosphate [12]. Although disrupted phosphate homeostasis in patients with CKD
also induces secondary hyperparathyroidism, the elevation of serum FGF-23 occurs earlier
than that of serum PTH levels [13,14].

Since FGF-23 regulates serum mineral homeostasis and derives from bone, FGF-23 has
effect on bone metabolism. It has been suggested that FGF-23 is directly associated with bone
metabolism. Treatment with resorption inhibitors or anabolic agents could modulate bone for-
mation rate and simultaneously influence circulating FGF-23 concentrations [15]. In patients
with CKD, hyperphosphatemia and secondary hyperparathyroidism lead to a high turnover of
bone disease [16,17]. Since serum FGF-23 concentrations concurrently rise in these patients, a
high turnover bone disease may accompany high levels of FGF-23 [18]. Furthermore, an inde-
pendent negative association between FGF-23 and bone mineral density at the total hip and
femoral neck has also been observed in CKD stage 4 patients [19].

Nevertheless, changes in serum FGF-23 levels are not always associated with changes in
serum phosphate concentration, according to results from animal studies [20]. In rodents sub-
jected to parathyroidectomy (PTX), a dissociated change in serum phosphate and FGF-23 lev-
els was observed. This dissociation makes the principle that chronic phosphate burden in CKD
resulting in increased serum PTH and FGF-23 levels and leading to renal osteodystrophy may
not be consistent when present in PTX animals accompanied by renal failure. As a result, the
relationship between hormone levels and bone metabolism may be altered. We questioned
whether serum FGF-23 levels correlated with changes in parameters of bone metabolism when
a model included underwent PTX and renal failure animals.
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Therefore, we designed an experimental CKD model combined with PTX in which serum
phosphate and FGF-23 levels were dissociated. We investigated the relationship between FGF-
23, biochemical markers, and bone histomorphometric parameters in this model with the aim
of providing more information concerning hormone and bone metabolism in CKD.

Materials and Methods

Animals
Six-week-old male Sprague Dawley rats were housed under controlled conditions (room
temperature, 22°C ± 1°C; alternating 12-h light and dark periods). All animals were given rat
chow (Purina Rodent Chow 5001, Labdiet, Richmond, IN) containing 0.95% calcium and
1.07% phosphate (weight/weight dry food) and tap water ad libitum throughout the study.
The National Cheng Kung University Animal Ethics Committee approved all of the experi-
mental procedures (Permit Number: 100269). The care and handling of the animals were in
accordance with the National Institute of Health guidelines for ethical treatment of animals.
All surgery was performed under anesthesia, and all efforts were made to minimize
suffering.

Experimental Procedure
After the rats were acclimatized to the laboratory environment for 1 week, they were randomly
divided into 3 groups: PTX and CKD (PTX+CKD, 9 rats), CKD without PTX (CKD, 9 rats),
and neither PTX nor CKD (sham-operated control, 8 rats). The PTX+CKD group underwent
PTX caused by electrocautery under a dissecting microscope [21,22] after anesthesia. Anesthe-
sia was induced with 5% isoflurane mixed with 70% N2O and 30% O2 in an induction chamber
and regulated as necessary. Surgical-depth anesthesia was maintained with 1.5% isoflurane.
The parathyroid glands of the other rats (CKD and sham-operated control) were exposed, but
electrocautery was not performed. In all 9 PTX+CKD rats, blood samples withdrawn 3 days
after PTX showed serum calcium levels< 6.0 mg/dL that were confirmed successful PTX [23].

For the PTX+CKD rats (1 week after PTX) and CKD rat models, CKD was induced by a
partial nephrectomy performed as a 2-step procedure with general anesthesia as described pre-
viously [21–23]; in sham-operated control rats, the kidneys were exposed but no nephrectomy
was performed. At 8 weeks after induction of CKD, blood samples were obtained by intracar-
diac puncture (all 26 rats) after general anesthesia, spot urine samples were collected (feasible
only in 19 rats), and the rats were euthanized. Serum was separated immediately by centrifuga-
tion (1500×g for 15 min) and stored at −75°C for future assays.

Blood and Urine Assays
Serum was analyzed for blood urea nitrogen (BUN), creatinine (Cr), phosphate, calcium, and
alkaline phosphatase (ALP) levels with an automatic chemistry analyzer. Enzyme-linked
immunosorbent assay kits were used to measure levels of serum intact parathyroid hormone
(PTH,ALPCO, Salem, NH), FGF-23 (Kainos Laboratories, Tokyo, Japan), osteocalcin (Bio-
medical Technologies, Inc., Stoughton, MA), 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)
(MyBioSource, Inc., San Diego, USA) and collagen type I C-telopeptide (CTX) (MyBioSource,
Inc., San Diego, USA) levels. Urine chemistry values were measured with an automatic chemis-
try analyzer. Urinary fractional excretion of phosphate was calculated as (urine
phosphate × serum creatinine) × [100/(serum phosphate × urine creatinine)]. The same equa-
tion was applied to calculate urinary fractional excretion of calcium.

Relationship between FGF-23 and Bone Histormorphometries

PLOS ONE | DOI:10.1371/journal.pone.0133278 July 17, 2015 3 / 16



Bone Histomorphometry
The rats were injected intraperitoneally with calcein (20 mg/kg) (Sigma-Aldrich, St Louis, MO)
10 days and 3 days before being euthanized. After death, the distal femurs were excised, placed
in 70% ethanol, and dehydrated. Specimens were embedded in methyl methacrylate according
to the manufacturer (Fluka, 64200, Sigma-Aldrich, St Louis, MO) and not decalcified. Longitu-
dinal sections (thickness, 5μm) were made in the sagittal plane with a motorized microtome
(Microm HM 355S, Microm International GmbH, Walldorf, Germany) and stained with Mas-
son trichrome.

Quantitative study of the distal femoral metaphysis was performed according to histomor-
phometric procedures as described previously [24–26] and evaluated using image analysis soft-
ware (Image Pro Plus 6.1 for Windows; Media Cybernetics, Silver Spring, MD). The bone
turnover, mineralization, and volume (TMV) classification, suggested by the Kidney Disease
Improving Global Outcomes (KDIGO) guidelines, was used to assess renal osteodystrophy
[27]. Volume histomorphometric parameters were measured including bone volume ratio
(BV/TV) (%), trabecular thickness (μm), trabecular separation (space between trabeculae, μm),
and trabecular number (1/mm). The femoral sections were photographed under a fluorescent
light microscope (×200) using a digital camera (COOLPIX 4500; Nikon, Tokyo, Japan). Oste-
oid parameters were measured as osteoid volume ratio (1) (OV/BV) = osteoid volume/bone
volume; (2) osteoid surface ratio (OS/BS) = osteoid surface/ bone surface; and (3) osteoid thick-
ness (O.Th) = (osteoid area/osteoid perimeter) x 2/1.2 [25]. Dynamic histomorphometric
parameters were determined from the metaphysis, including (1) percent mineralized bone sur-
face (MS/BS) (%) = ([perimeter of a single labeled surface × 0.5] + [perimeter of a double
labeled surface])/(perimeter of the total bone surface); and (2) mineral apposition rate (MAR)
(μm/d) = (distance between the 2 fluorescent labels)/(time between the 2 injections of the fluo-
rescent label) x 1.2 [25]. Bone turnover was determined using bone formation rate (BFR) (μm/
d) = percent mineralized bone surface × mineral apposition rate. Assessment of mineralization
was evaluated by osteoid maturation time (OMT) = O.Th/MAR.

Statistical Analysis
Data analysis was performed with statistical software (SPSS, version 17.0, IBM Corporation,
Armonk, NY). Data on figure were presented with mean ± SEM. The others were reported as
mean ± SD for continuous variables. Variables those without normal distribution were ana-
lyzed after logarithmic transformation for normal distribution. ANOVA and post hoc Games-
Howell test were used to compare difference between groups. The relations between serum bio-
markers were evaluated using Pearson’s correlation. Univariate regression analysis was per-
formed to assess linear relationships between serum biomarkers and bone parameters.
Stepwise multivariate regression analysis was performed to determine the variables had inde-
pendent association with bone histomorphometric parameters. The probability of entry was
0.05 and removal was 0.1 in stepwise analysis. Two sided p value< 0.05 was considered statisti-
cally significant.

Results

Assessment of serum biochemical parameters
The severity of renal failure was similar between the PTX+CKD and the CKD groups (BUN:
61 ± 26 and 68 ± 26 mg/dL, respectively; Cr: 1.2 ± 0.4 and 1.2 ± 0.4 mg/dL, respectively). The
mean BUN and Cr levels of the sham-operated control group (BUN: 18 ± 3 mg/dL; Cr:
0.5 ± 0.1 mg/dL) were significant difference from PTX+CKD and CKD groups. (all p< 0.001).

Relationship between FGF-23 and Bone Histormorphometries

PLOS ONE | DOI:10.1371/journal.pone.0133278 July 17, 2015 4 / 16



The mean serum phosphate levels were significantly higher, and calcium levels were signifi-
cantly lower in the PTX+CKD animals compared to either the CKD or control groups (Fig 1).
The mean serum phosphate and calcium levels were similar between the CKD and sham-oper-
ated groups (Fig 1).

Fractional Excretion of Electrolytes
The mean fractional excretion of phosphate was significantly greater in the CKD group than in
controls (20 ± 10% and 6 ± 3%, respectively; p = 0.04); there was no significant difference in
fractional excretion of phosphate between control and PTX+CKD groups (7 ± 6%) or between
the CKD and PTX+CKD groups. Referred to mean fractional excretion of calcium, there was
significantly greater (p = 0.01) in the PTX+CKD group (4 ± 3%) than in the control group
(0.2 ± 0.1%). But the fraction excretion of calcium in the CKD group (4 ± 4%) was not different
to the other two groups.

Circulating Intact PTH Levels
Mean serum intact PTH level was significantly greater in the CKD than in the control group
and significantly less in the PTX+CKD compared to the control or CKD group (Fig 1). These
PTH levels confirmed the presence of PTX in the PTX+CKD group (lowest PTH levels) and
secondary hyperparathyroidism in the CKD group (highest PTH levels).

Assessment of Serum Biomarkers of Bone
Evaluation of bone biomarkers showed that mean ALP was similar for the control, CKD, and
PTX+CKD groups (Fig 1). The mean serum osteocalcin level was greater in the CKD and PTX
+CKD groups than in the control group. The mean serum FGF-23 levels were significantly dif-
ferent between the 3 groups, being greatest in the CKD group and lowest in the PTX+CKD
group. The mean 1,25-(OH)2D3 levels in the CKD group was significantly lower than in the
control group, while mean serum levels of CTX, a bone resorption marker [28], were signifi-
cantly higher in the CKD group than in the control and PTX+CKD groups. The bone resorp-
tion activity was highest in CKD group according to the serum CTX data.

Histomorphometric Bone Parameters
Evaluation of static histomorphometric parameters showed that the mean bone volume ratio
and mean trabecular number were significantly greater in the PTX+CKD group than in the
control or CKD groups. Mean trabecular thickness was significantly greater, and mean trabecu-
lar separation was significantly lower in the PTX+CKD compared to the CKD group (Table 1).
Osteoid thickness in the CKD group was significantly greater than in the PTX+CKD group
(Table 1), but no other osteoid parameter was significantly different between the groups.

Evaluation of dynamic histomorphometry (Table 1 and Fig 2) showed that the mean per-
cent mineralized bone surface was significantly lower in the PTX+CKD than the CKD group.
Mean MAR and mean BFR were significantly different among the three groups, both were
highest in the CKD and lowest in the PTX+CKD groups. Following parallel evaluation of
serum bone resorption marker levels and bone formation rates, the PTX+CKD group was
denominated as having low bone turnover, while the CKD group had high bone turnover.
OMT used as a parameter to measure mineralization rates, was not different in among the
groups.

Relationship between FGF-23 and Bone Histormorphometries
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Correlation Study and Regression Analyses
The Pearson’s correlations between various serum biomarkers were analyzed (Table 2). Serum
FGF-23 levels correlated with serum intact PTH, CTX, calcium, and phosphate levels. Serum
1,25-(OH)2D3 values correlated with serum intact PTH, osteocalcin, and CTX levels. There

Fig 1. Comparison of serum biochemical parameters between control CKD and PTX +CKD group. (A) Serum phosphate levels. (B) Serum calcium
levels. (C) Serum intact PTH levels. (D) Serum FGF-23 levels. (E) Serum Vitamin D (1,25-(OH)2D3) levels. (F) Serum ALP levels. (G) Serum osteocalcin
levels. (H) Serum CTX levels. n = 8 control, n = 9 CKD, n = 9 PTX +CKD. Results were presented as mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.

doi:10.1371/journal.pone.0133278.g001
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was also an association between serum values of intact PTH and CTX. Serum calcium levels
also correlated positively with serum intact PTH levels and negatively with serum phosphate
levels. In addition, serum phosphate values also correlated with serum intact PTH and osteo-
calcin values.

Univariate linear regression was used to analyze between serum biomarkers and bone histo-
morphometric parameters (Table 3). Bone formation rate and MS/BS were associated with
serum values of intact PTH, FGF-23, CTX, calcium, and phosphate levels. MAR was associated
with circulating concentrations of intact PTH, FGF-23, 1,25-(OH)2D3, CTX, calcium and
phosphate. Bone volume ratio correlated with circulating concentrations of intact PTH, FGF-
23, CTX, calcium, and phosphate. Bone trabecular thickness was associated with serum FGF-
23 and CTX levels. The osteoid parameters OV/BV, OS/BS and O.Th correlated with serum
levels of intact PTH, FGF-23, and CTX. In addition, O.Th also correlated with serum calcium
levels. The linear regression analysis in this study did not demonstrate any association between
biochemical parameters and OMT, used to assess bone mineralization rates.

Stepwise multiple linear regression analyses were performed to investigate any potential
independent relationships between biomarkers and bone histomorphometric parameters.
Serum biomarkers including intact PTH, FGF-23, ALP, osteocalcin, 1,25-(OH)2D3, CTX, cal-
cium, and phosphate were used as independent variables. Bone histomorphometric parameters
were considered dependent variables (Table 4). Serum intact PTH was an independent
predictor of bone formation rate and MS/BS. Circulating calcium and 1,25-(OH)2D3 values

Table 1. Structural and Dynamic Histomorphometric Parameters of Experimental Chronic Kidney Disease Rats that did or did not Undergo Para-
thyroidectomy.*

Parameter Sham-operated
Control

Chronic Kidney Disease
(CKD)

Parathyroidectomy and Chronic Kidney Disease (PTX
+CKD)

No. rats 8 9 9

Structure parameters

Bone volume ratio 19 ± 5 15 ± 4 31 ± 8a,b

Trabecular thickness (μm) 88 ± 27 60 ± 13 91 ± 21b

Trabecular separation
(μm)

624 ± 258 777 ± 231 395 ± 200b

Trabecular number (1/
mm)

1.5 ± 0.8 1.3 ± 0.6 2.4 ± 0.8a,b

Dynamic parameters

MS/BS (%) 26 ± 5 35 ± 10 21 ± 7b

MAR (μm/d) 1.8 ± 0.38 2.5 ± 0.49c 1.3 ± 0.43b,c

BFR (μm/d) 0.5 ± 0.1 0.9 ± 0.2a 0.3 ± 0.2b,c

Mineralization

OV/BV 6.7 ± 6.7 15.0 ± 15.0 4.0 ± 2.7

OS/BS 19.3 ± 16.3 28.9 ± 25.5 9.9 ± 5

O.Th 24.8±6.2 38.9 ± 14.7 19.7 ± 6.4d

OMT 14.4± 5.8 15.4 ± 3.3 16.9 ± 8.2

*N = 26 rats. Data reported as mean ± SD. Abbreviations: CKD, chronic kidney disease; PTX+CKD, parathyroidectomy and chronic kidney disease; MS/

BS, percent mineralized bone surface; MAR, mineral apposition rate; BFR, bone formation rate; OV/BV, osteoid volume ratio; OS/BS, osteoid surface

ratio; O.Th, osteoid thickness; OMT, osteoid maturation time
ap < 0.01, compared with sham-operated control group.
bp < 0.01, compared with CKD group.
cp < 0.05, compared with sham-operated control group.
dp < 0.05, compared with CKD group. NS, no significant (p > 0.05)

doi:10.1371/journal.pone.0133278.t001
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Fig 2. Dynamic bone histomorphometry with calcein-fluorescent labeling. The distance between the 2 lines of calcein label is greater in the chronic
kidney disease (CKD) than in the control group. The PTX and chronic kidney disease (PTX+CKD) group had fewer areas with 2 labels, and the distance
between the 2 lines of calcein label was smaller, indicating lower bone turnover in the PTX+CKD than in the CKD group. Scale bar = 50 μm.

doi:10.1371/journal.pone.0133278.g002
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Table 2. Pearson’scorrelation coefficients of relationships between serum biomarkers values.

intact PTH FGF23 ALP Osteocalcin 1,25(OH)2D3 CTX Calcium Phosphate

intact PTH r .726** -.290 -.001 -.546** .654** .641** -.58**

p <.001 .151 .99 .004 <.001 <.001 .002

FGF-23 r .726** -.239 -.128 -.266 .647** .718** -.511**

p <.001 .240 .554 .19 <.001 <.001 .008

ALP r -.290 -.239 .091 .001 .061 -.129 -.004

p .15 .24 .66 .99 .77 .53 .99

Osteocalcin r -.001 -.128 .091 -.506** .203 -.312 .464*

p .99 .54 .66 .008 .32 .12 .02

1,25(OH)2D3 r -.546** -.266 .001 -.506** -.699** -.029 .003

p .004 .19 .99 .008 <.001 .89 .88

CTX r .654** .647** .061 .203 -.699** .340 -.316

p <.001 <.001 .77 .32 <.001 .09 .115

Calcium r .641** .718** -.129 -.312 -.029 .340 -.782**

p <.001 <.001 .53 .12 .89 .09 <.001

Phosphate r -.58** -.511** -.004 .464* .03 -.316 -.782**

p .002 .008 .99 .02 .88 .115 <.001

Abbreviations are defined in Table 1

r, correlation coefficient; p, level of significance

**Correlation was significant at the 0.01 level

*Correlation was significant at the 0.05 level

doi:10.1371/journal.pone.0133278.t002

Table 3. Univariate linear regression analyses indicating relationships between serum biomarkers and bone histomorphometric parameters.
Bone histomorphometric parameters values as dependent variables.

BFR BV/TV thickness O.Th OMT

intact PTH β .714 -.657 -.360 .489 -.18

p <.001 <.001 NS .011 NS

FGF-23 β .707 -.737 -.526 .508 -.021

p <.001 <.001 .006 .008 NS

ALP β -.157 .227 .181 .023 .019

p NS NS NS NS NS

Osteocalcin β .094 .310 .131 -.005 -.075

p NS NS NS NS NS

1,25(OH)2D3 β -.317 .079 .208 -.368 .128

p NS NS NS NS NS

CTX β .637 -.491 -.41 .555 .031

p <.001 .011 .037 .003 NS

Calcium β .663 -.683 -.254 .420 -.262

p .001 <.001 NS .033 NS

Phosphate β -.521 .555 .058 -.307 .381

p .006 .003 NS NS NS

Abbreviations: intact PTH, intact parathyroid hormone; FGF-23, Fibroblast growth factor 23; ALP, alkaline phosphatase; CTX, collagen type I C-

telopeptide; BFR, bone formation rate; MS/BS, percent mineralized bone surface; MAR, mineral apposition rate; BV/TV, bone volume ratio; O.Th, osteoid

thickness; OMT, osteoid maturation time

β, regression coefficient; p, levels of significance; NS, no significant

doi:10.1371/journal.pone.0133278.t003
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correlated with MAR. Levels of FGF-23 were independently associated with bone volume
parameters: bone volume and bone trabecular thickness. CTX was associated with osteoid
parameters. No biochemical parameters could predict OMT in the present study (Table 4).

Discussion
In the present study, the PTX+CKD and the CKD groups had similar CKD severity; the PTX
+CKD group had hypoparathyroidism and the CKD group had secondary hyperparathyroid-
ism (Fig 1). The PTX+CKD group had a low bone formation rate, low serum bone resorption
marker values, and low serum FGF-23 levels; conversely, in the CKD group, there was a higher
bone formation rate, higher serum bone resorption marker values, and higher serum FGF-23
levels (Table 1 and Fig 1). Stepwise multivariate regression analysis demonstrated that serum
FGF-23 independently correlated with bone structure histomorphometric parameters: bone
volume and bone trabecular thickness (Table 4). These data were consistent with the hypothe-
sis that FGF-23 correlated with bone histomorphometry, more specifically with bone volume
in CKD. Instead, intact PTH was independently associated with bone formation rate and CTX
correlated with osteoid parameters.

The hormone PTH has been reported to stimulate FGF-23 secretion in osteocytes [29–31]
and to regulate FGF-23 levels in vivo [32,33]. In CKD, secondary hyperparathyroidism induces
high levels of serum FGF-23 [31], and PTX has shown to decrease elevated FGF-23 levels in
advanced secondary hyperparathyroidism [22,34] in PTX + CKD rats (Fig 1). Accordingly, in
the present study we show that serum FGF-23 levels correlated with serum PTH levels
(Table 2).

Table 4. Stepwisemultiple linear regression analyses: bone histomorphometric parameters as individual dependent variables. The probability of
entry was 0.05 and removal was 0.1 during stepwise analyses.

BFR BV/TV thickness O.Th OMT

Adjusted r2 .489 .524 .246 .279 NS

intact PTH β .714 -.257 .046 .220 -

p <.001 .206 .861 .338

FGF-23 β .399 -.737 -.526 .256 -

p .053 <.001 .006 .259

ALP β .054 .019 .100 -.011 -

p .727 .899 .587 .951

Osteocalcin β .095 .216 -.116 -.122 -

p .519 .122 .520 .493

1,25(OH)2D3 β .104 -.125 .073 .038 -

p .553 .392 .694 .877

CTX β .297 -.025 -.120 .555 -

p .119 .892 .608 .003

Ca β .349 -.317 .254 .262 -

p .059 .112 .319 .151

P β -.161 .242 -.285 -.146 -

p .372 .134 .162 .425

NS, not significant; other abbreviations are defined in Table 3

β, partial correlation coefficient; p, levels of significance

Stepwise multivariate regression analysis did not display any independent association between independent variables and osteoid maturation time (OMT)

in the present study.

doi:10.1371/journal.pone.0133278.t004
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Phosphate balance is regulated by both PTH and FGF-23. When the serum phosphate level
is elevated, PTH and FGF-23 increase the fractional excretion of phosphate by acting on the
proximal renal tubules. In CKD, the decline in renal function leads to phosphate retention.
FGF-23 serum levels increase and may correlate with total phosphate load in CKD. However,
in the PTX+CKD rats in our study, a low mean serum FGF-23 level was noted despite hyper-
phosphatemia, which was likely related to low mean circulating PTH levels (Fig 1). Thus, in
this PTX+CKD group with hypoparathyroidism and low FGF-23 levels, phosphaturia had not
increased [32], although the CKD group had increased fractional excretion of phosphate (as
expected in CKD) [12]. Therefore, from our data it appeared that both low PTH and FGF-23
levels had limited phosphate excretion in the PTX+CKD rat model. Other animal studies with
hypoparathyroidism or calcium deficiency [20,32] also demonstrated that serum phosphate
values are inversely correlated with serum FGF-23 values.

FGF-23 interacts with vitamin-D and serum calcium. FGF-23 inhibits renal production of
the active form of vitamin-D [35], which increases calcium absorption in the intestine. In addi-
tion to diminished renal functional mass, the decrease circulating vitamin-D concentrations in
CKD patients is caused by the increase in FGF-23 levels and activity [36]. Calcium positively cor-
relates with FGF-23 under hypocalcemia [20, 37]. In a study in which rats fed a low-calcium and
low-vitamin D diet, severe hypocalcemia resulted in the decline of FGF-23 levels although serum
PTH values were elevated [20]. Hypocalcemia induced by PTX might also contribute to the low
circulating FGF-23 levels observed in our PTX+CKD rats. Under severe hypocalcemia, the drop
in circulating FGF-23 may raise active form of vitamin D levels and rescue serum calcium levels.
In our PTX + CKD rat model, serum calcium levels were all initially less than 6 mg/dL after
PTX; however, at the time of euthanization, the mean serum calcium levels rose to 7 mg/dL.
Accompanied by low FGF-23 levels in PTX+ CKD animals, 1,25-(OH)2D3 tended to increase
exponentially compared to CKD rats. The phenomenon might be related to physiological adap-
tion to severe hypocalcemia and prevention of further adverse effects to other tissues [37].

Osteodystrophy is a feature of CKD. In the present study, the CKD rats had a high bone
turnover associated with secondary hyperparathyroidism (Table 1 and Fig 1) [38, 39]. The
PTX+CKD group had a lower bone formation rate because PTX resulted in lower levels of
PTH, a hormone necessary for bone cell differentiation. The PTX+CKD group had a concur-
rent reduction in bone resorption marker levels compared to the CKD group. With regards to
the reduced bone formation rate and bone resorption rate [27], the PTX+CKD group was con-
sidered as having low bone turnover in this experimental model [22]. PTH modulates bone
cells including the activity of osteocytes, osteoblasts, and osteoclasts. The net influence of PTH
on bone metabolism depends on which effect predominates [40,41].

While FGF-23 is mainly produced by osteocytes, it may be associated with bone formation.
In our study, FGF-23 levels showed a positive linear association with bone formation rate
(Table 3), but in multiple regression analysis, FGF-23 was not an independent predictor of
bone formation. Instead, the bone formation rate could be determined by PTH (Table 4). The
relationship between bone formation rate and FGF-23 might be secondary to the PTH effect
(Table 2). Serum levels of bone non-collagen synthetic markers, serum ALP and osteocalcin
are generally used to evaluate bone turnover in CKD [42]. However, after PTX in patients with
CKD, bone synthesis markers may increase for a period instead of declining [43–46] and lower
bone formation rate occurs at this time [22]. The dissociated change between the bone forma-
tion rate and bone synthesis markers was also demonstrated in a study comparing bone histo-
morphometry before and after PTX in patients with secondary hyperparathyroidism [43].
Serum ALP values increased but the bone resorption reaction decreased after surgery. The
number of osteocytes decreased and the presence of empty lacunae increased. The presence of
two distinct tetracycline labeled areas could not be distinguished [43]. Instead, mineralization
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occurred in the osteocyte-canalicular system rather than at the mineralization front. This phe-
nomenon may explain why bone formation rates, calculated using fluorescent labels at the
mineralization front, could not positively correlate with ALP and osteocalcin after PTX in our
PTX+CKD animals (Table 4).

Both intermittent and continuous treatment with PTH have been reported to increase bone
formation rates in animals, while bone volume could be increased by intermittent supplement
but decreased by continuous supplement [40]. Overall, bone volume is determined by the net
effect of bone anabolism and catabolism [15]. Secondary hyperparathyroidism in CKD is simi-
lar to that observed with persistent exposure to PTH. High serum levels of resorption marker,
CTX, were observed in our CKD rats (Table 1) and they had high catabolism rate and low bone
volume parameters. Increased bone mineral density after PTX can be seen both in patients
with primary hyperparathyroidism and secondary hyperparathyroidism related to CKD [47]
as bone resorption decreases [43]. Our PTX+CKD rats were observed with highest bone vol-
ume parameters. Osteoid thickness decreased after PTX, while osteoid volume and osteoid sur-
face did not differ in our rats. Osteoid parameters correlated with CTX, which presumably
indicated that as more collagen cumulates, more degraded products could be generated.
Parameters of mineralization assessment such as osteoid maturation time did not differ among
the three groups (Table 1).

Osteocytes participate in bone remodeling by interacting with osteoblasts and osteoclasts,
or by secreting systemic regulators that control mineral metabolism [7,41]. According to bone-
renal axis in normal physiology, FGF-23 induces phosphaturia when the body is exposed to
phosphate load. The increase in FGF-23 also inhibits renal synthesis of 1,25-(OH)2D by sup-
pressing vitamin D-activating enzyme 1α-hydroxylase [36]. FGF-23 affects mineral metabo-
lism by coordinating bone mineralization. Increased bone volume may up-regulate FGF-23 to
excrete excess phosphate through the kidney and further suppress bone mineralization.
Administration of bone formation promoter or anti-resorption agents affected bone metabo-
lism and serum FGF-23 levels in one animal study [15]. The authors showed that supplementa-
tion with PTH forced an increase in the bone formation rate. The requirement for minerals
increased at this phase and FGF-23 secretion was decreased in order to reduce mineral loss.
When osteoprotegerin (OPG) was administered, the resorption of bone declined and bone vol-
ume increased as a primary effect. Consequently, the bone formation rate slowed down to pre-
vent further increases in bone volume. The overall mineral requirement decreased and FGF-23
secretion was enhanced.

However, the normal physiology of the bone-renal axis is disrupted in CKD. With renal
impairment, the retention of phosphate burden persistently induces PTH and FGF-23 expres-
sion. As a result, the physiological interplay regulating FGF-23, PTH, and bone metabolism in
CKDmay differ from those with normal renal function. In a large prospective case-cohort
study, the data showed that higher levels of serum FGF-23 were associated with fracture risk in
elderly men with decreased renal function but not in those without renal impairment [48].
How mineral imbalance, hormone dysregulation, or other pathophysiology in CKD affects the
interplay between FGF-23 and bone metabolism requires further study. In contrast, FGF-23
was shown to inhibit bone matrix mineralization in in vitro studies [49,50]. A negative associa-
tion between FGF-23 and bone mineral density or bone volume parameters was shown in
patients with CKD [51], while in some previous studies, this relationship was not observed
[52]. The authors concluded that these divergent findings might be related to different mea-
surement sites or to the method selected to detect bone density [52]. In addition, the role
played by FGF-23 in phosphate regulation and bone metabolism is likely different in diabetes
mellitus patients from those without diabetes mellitus [53–55]. Therefore, the numbers of dia-
betes mellitus patients included in the above studies could have affected the final results. The
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relationship between plasma FGF-23 values and bone histomorphometric parameters in pedi-
atric and young adult CKD patients had been previously reported in series studies from the
same group [56–58]. In the children who received peritoneal dialysis supplied with oral calci-
triol, serum FGF-23 independently correlated with osteoid parameters and osteoid maturation
time [57]. However, in young patients with CKD stage 2–5 without dialysis, circulating FGF-23
was not consistent with the above and poorly predicted the bone formation rate. Instead,
serum PTH values were independently associated with increased osteoid accumulation and cir-
culating phosphate concentrations independently correlated with osteoid accumulation and
osteoid maturation time [58]. The authors concluded that renal FGF-23 excretion might
obscure the relationship between FGF-23 and bone histomorphometric variables in predialysis
CKD patients. This may explain why no correlation was observed between our FGF-23 values
and the osteoid parameters. In addition, the variables included in our stepwise analysis might
have influenced the final results. In our study, serum CTX was analyzed and associated with
the osteoid parameters after stepwise analysis. Conversely, FGF-23 negatively correlated with
bone volume in the above-mentioned pediatric patients on peritoneal dialysis in bivariate anal-
ysis [57], while this relationship was not seen in young CKD patients without dialysis [58]. The
bone volumes of these CKD patients were either normal or increased although most had high
serum PTH and FGF-23 levels. The bone growth-inducing properties of other endogenous cir-
culating growth hormones in these young patients and may have obscured the association
between FGF-23 and bone volume parameters that was observed in our animals.

PTX resulted in an extremely high phosphate burden in the PTX+CKD group. Interestingly,
FGF-23 decreased rather than increased in this experimental model. Since serum FGF-23 val-
ues were still independently correlated with bone volume, FGF-23 might exert specific actions
on bone that are independent of its effects on bone mineralization. This should be confirmed
with further experiments. Our study demonstrated the relationship between FGF-23, other bio-
chemical markers, and bone histomorphometric parameters with the intention to provide a
better understanding of bone metabolism in CKD. Limitations of the present study include the
absence of data regarding potential of cause and effect relationships linking biomarkers and
bone parameters. In the future, the experiment that treated with various concentration of FGF-
23 in FGF-23 knock-out + CKD animal is a way to evaluate the sole effect of FGF-23 on bone.
In addition, our study was based on animal models instead of humans. Further animal or clini-
cal studies should take into consideration other etiologies, such as diabetes mellitus, which lead
to low turnover bone in CKD.

Conclusions
In conclusion, the rat model with CKD and secondary hyperparathyroidism (CKD group) had
high serum FGF-23 levels and high bone turnover. Although in the presence of hyperphospha-
temia, serum FGF-23 levels decreased in the CKD rat model with hypoparathyroidism (PTX
+CKD group) and had low bone turnover. According to stepwise multivariate regression analy-
sis, circulating FGF-23 levels independently correlated with bone volume. In addition, in the
present study, serum PTH independently correlated with bone formation rate, and CTX was
associated with osteoid parameters.
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