Synthesis and Evaluation of Aliphatic-chain Hydroxamates Capped with Osthole Derivatives as Histone Deacetylase Inhibitors Shih-Wei Chao (趙世偉)^a, Ching-Chow Chen^b, Chen-Yui Yang^c, Yun-Chieh Lin^b, Chia-Chun Yu^c, Jih-Hwa Guh^c, Chiao-I Kuo^d, Ping Yang^a, Chung-I Chang^{d*}, Wei-Jan Huang^{a*} ^aGraduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan ^bDepartment of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan ^cSchool of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan ^dInstitute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan Our previous studies have demonstrated that osthole, a Chinese herbal compound, could be incorporated into the hydroxycinnamide scaffold of LBH-589, a potent HDAC inhibitor, as an effective hydrophobic cap; the resulting compounds showed significant potency against several HDAC isoforms. Here, we presented a series of osthole derivatives fused with the aliphatic-hydroxamate core of suberoylanilide hydroxamic acid (SAHA), a clinically-approved HDAC inhibitor. Several compounds showed potent activity against nuclear HDACs comparable. Further assays against individual HDAC isoforms revealed that some compounds showed not only SAHA-like activity towards HDAC1, -4 and -6, they inhibited HDAC8 by log difference than SAHA and thus exhibited a broader HDAC inhibition spectrum. Among them, compound **6g** showed multiple significant cellular effects towards human prostate cancer cells.