English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18270/20497 (89%)
Visitors : 11655129      Online Users : 1007
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/9172


    標題: 克雷伯氏肺炎桿菌致病因子之研究
    Study on the virulence factors of Klebsiella pneumoniae
    作者: 廖虹婷
    Hung-Ting Liao
    貢獻者: 張敏政
    張淑玉
    嘉南藥理科技大學:生物科技研究所
    關鍵字: 病原菌
    克雷伯氏肺炎桿菌
    致病因子
    pathogen
    Klebsiella pneumoniae
    virulence factor
    日期: 2007
    上傳時間: 2008-12-03 11:15:23 (UTC+8)
    摘要: 克雷伯氏肺炎桿菌為革蘭氏陰性菌,在醫院為常見引起院內感染的重要病原菌。其易引起化膿性感染、肺炎、泌尿系統及敗血症,即使投予抗生素之治療後,仍有相當高的死亡率。然而,近年來在台灣克雷伯氏肺炎桿菌肝膿瘍之發生率卻有逐年增加趨勢,並且釵h克雷伯氏肺炎桿菌肝膿瘍患者皆發生肝外轉移病症,而造成很嚴重的合併症,如敗血性內眼炎導致失明。比較國內外發現 如此大的差異與高死亡率,頗受國內感染專家學者的重視。而在近年的文獻報告中,指出三個與肝膿瘍發生有關的致病因子,分別是rmpA、rmpA2、與magA。因此,我們利用跳躍子(mini-Tn5)與克雷伯氏肺炎桿菌進行random mutagenesis獲得一株跳躍子突變株。藉由血清抗性試驗結果得知此突變株對人類血清有高感受性,並由0.3% soft agar 培養基可發現突變株的菌落直徑明顯比野生株大。值得注意的是,將野生株與突變株以腹腔注射方式打入小鼠體內,結果顯示突變株毒性明顯有下降情形。並利用ELISA去測定小鼠肺部組織及血清內的細胞激素,結果指出野生株與突變株在動物模式中細胞激素表現量有很明顯的差異,藉由以上實驗結果間接說明此突變株與調節宿主免疫防禦機制有關並且推測其是一個與肺炎致病力有關的突變株,因此,將此突變株命名為pvf (pneumonia virulence factor) 突變株。
    Klebsiella pneumoniae is an important pathogen of nosocomial and community-acquired infections, especially suppurative infection, pneumonia, urinary tract infection, and septicemia in humans. Althogh the development of new and potent antibiotics, K. pneumoniae infectious are still associated with a high mortality rate up to 50%. In Taiwan, the high incidence of K. pneumoniae pyogenic liver abscess has never reported in English literature. In addition, extrahepatic metastases, such as septic endophthalmitis, are often occurred with serious complications. The high mortality rate and high incidence of K. pneumoniae pyogenic liver abscess in Taiwan make further investigation is necessary. The current researches, we have known several virulence factors of K. pneumoniae liver abscess : (1) rmpA; (2) rmpA2; (3) magA. In this study, the pvf (pneumoniae virulence factor) mutant was isolated by mini-Tn5 transposon insertional inactivation and a serum sensitivity assay. The pvf mutant was significantly more easily killed by human serum than the wild type. The colony diameter of this mutant on 0.3% soft agar plate was larger than those of wild type strain. Interestingly, the mice experiments demonstrated virulence attenuation when the pvf mutant was administered intraperitoneally to normal mice. In addition, the cytokine expression profile in lung tissue of mice infected by pvf mutant showed significantly different from those of mice infected by wild type, suggesting that the pvf factor may mediate resistance to host innate defenses and it is an important virulence factor for mice.
    關聯: 1. Bartlett JG, O’Keefe P, Tally FP, Louie TJ, Gorbach SL. Bacteriology of hospital-acquired pneumonia. Arch Intern Med. 1986; 146:868–71.
    2. De Champs C, Rich C, Chandezon P, Chanal C, Sirot D, Forestier C. Factors associated with antimicrobial resistance among clinical isolates of Klebsiella pneumoniae: 1-year survey in a French university hospital. Eur J Clin Microbiol Infect Dis. 2004; 18:18.
    3. Bryan CS, Reynolds KL, Brenner ER. Analysis of 1,186 episodes of gram-negative bactermia in non-university hospitals: the effects of antimicrobial therapy. Rev. Infect. Dis. 1983; 5:629-638.
    4. Duggan JM, Oldfield GS, Ghosh HK. Septicaemia as a hospital hazard. J. Hosp. Infect. 1985; 6:406-412.
    5. Lorian V, Topf B. Microbiolohy of nosocomial infections. Arch. Intern. Med. 1972; 130:104-110.
    6. Graybill JR, Marshall LW, Charache P, Wallace CK, Melvin VW. Nosocomial pneumonia. A continuing major problem. Am. Rev. Respir. Dis. 1973; 108:1130-1140.
    7. Hoffman NR, Preston Jr. FS. Friedlander’s pneumonia. A report of 11 cases and appraisal of antibiotic therapy. Dis Chest. 1968; 53:481–486.
    8. Carpenter JL. Klebsiella pulmonary infections: occurrence at one medical center and review. Rev Infect Dis. 1990; 12:672-682.
    9. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998; 11:589–603.
    10. Favre-Bonte S, Darfeuille-Michaud A, Forestier C. Aggregative adherence of Klebsiella pneumoniae to human intestine-407 cells. Infect Immun. 1995; 63:1318-1328
    11. Richards H, Datta N. Plasmids and transposons acquired by Salmonella typhi in man. Plasmid. 1982; 8:9–14.
    12. Fung CP, Chang FY, Lee SC et al. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut. 2002; 50:420–424.
    13. Cheng DL, Liu YC, Yen MY, Liu CY, Wang RS. Septic metastatic lesions of pyogenic liver abscess: their association with Klebsiella pneumoniae bacteria in diabetic patients. Arch Intern Med. 1991; 151:1557-1559.
    14. Whitfield C, Robert IS. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol. 1999; 31:1307-1319.
    15. Mori M, Ohta M, Agata N et al. Identification of species and capsular types of Klebsiella clinical isolates, with special reference to Klebsiella planticola. Microbiol Immunol. 1989; 33:887–895.
    16. Wacharotayankun R, Arakawa Y, Ohta M, et al. Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ. Infect Immun. 1993; 61:3164–3174.
    17. Ørskov I, Ørskov F. Serotyping of Klebsiella. Methods Microbiol. 1984; 14:143-164.
    18. Cryz SJ, Mortimer MP, Mansfield V, Germanier R. Seroepidemiology of Klebsiella bacteremic isolates and implications for vaccine development. J Clin Microbiol. 1986; 23:687-690.
    19. Kiseleva BS, Krasnogrovets VN. Role of Klebsiella pneumoniae in the etiology of bacterial sepsis. Zentralbl Microbiol Epidemiol Immunobiol. 1983; 2:20-25.
    20. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am J Med. 1991; 91:72– 75.
    21. Highsmith AK, Jarvis WR. Klebsiella pneumoniae: selected virulence factors that contribute to pathogenicity. Infect Control. 1985; 6:75-77.
    22. Amako K, Meno Y, Takade A. Fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli K1. J Bacteriol. 1998; 170:4960-4962
    23. Cryz SJ, Fürer E, Germanier R. Experimental Klebsiella pneumoniae burn wound sepsis: role of capsular polysaccharide. Infect Immun. 1984; 43:440-441
    24. Podschun R, Ullmann U. Klebsiella capsular type K7 in relation to toxicity, susceptibility to phagocytosis and resistance to serum. J Med Microbiol. 1992; 36:250-254.
    25. Izquierdo L, Merino S, Regue M, Rodriquez F, Tomas JM. Synthesis of a Klebsiella pneumoniae O-antigen heteropolysaccharide (O12) requires an ABC 2 transporter. J Bacteriol. 2003; 185:1634-1641.
    26. Williams P, Lambert PA, Brown MRW, Jones RJ. The role of the O and K antigens in determining the resistance of Klebsiella aerogenes to serum killing and phagocytosis. J Gen Microbiol. 1983; 129:2181-2191.
    27. Simmons-Smit AM, Verweij-van Vught AM, MacLaren D. The role of K antigens as virulence factors in Klebsiella. J Med Microbiol. 1986; 21:133– 137.
    28. Nassif X, Sansonetti PJ. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun. 1986; 54: 603– 608.
    29. Albertí S, Marqués G, Camprubi S et al. C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins. Infect Immun. 1993; 61:852-860.
    30. Tomás JM, Benedí VJ, Ciurana B, Jofre J. Role of capsule and O antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect Immun. 1986; 54: 85-89.
    31. Ciurana B, Tomás JM. Role of lipopolysaccharide and complement in susceptibility of Klebsiella pneumoniae to nonimmun serum. Infect Immun. 1987; 55:2741-2746.
    32. Merino S, Camprubí S, Albertí S, Benedí VJ, Tomás JM. Mechanisma of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun. 1992; 60:2529-2535.
    33. Tomás JM, Camprubí S, Williams P. Surface exposure of the O-antigen in Klebsiella pneumoniae O1: K1 serotype strains. Microb Pathog. 1988; 5:141-147.
    34. Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Goodman RE, Standiford TJ. Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. J Immunol. 1995; 155:722–729.
    35. Laichalk LL, Kunkel SL, Strieter RM, Danforth JM, Bailie MB, Standiford TJ. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia. Infect Immun. 1996; 64:5211–5218.
    36. Moore TA, Perry ML, Getsoian AG, Newstead MW, Standiford TJ. Divergent role of gamma interferon in a murine model of pulmonary versus systemic Klebsiella pneumoniae infection. Infect Immun. 2002; 70:6310–6318.
    37. Standiford TJ, Strieter RM, Greenberger MJ, Kunkel SL. Expression and regulation of chemokines in acute bacterial pneumonia. Biol Signals. 1996; 5:203–208.
    38. Standiford TJ, Huffnagle GB. Cytokines in host defense against pneumonia. J Invest Med. 1997; 45:335–345.
    39. Kabha K, Nissimov L, Athamna A et al. Relationships among capsular structure, phagocytosis, and mouse virulence in Klebsiella pneumoniae. Infect Immun. 1995; 63:847-852.
    40. Cheng DL, Liu YC. Klebsiella pneumoniae liver abscess in Taiwan. J Infect Dis Soc. ROC. 1997; 8:2-5.
    41. Wang JH, Liu YC, Lee SSJ, et al. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis. 1998; 26:1434-1438.
    42. Saccente M. Klebsiella pneumoniae liver abscess, endophthalmitis, and meningitis in a man with newly recognized diabetes mellitus. Clin Infect Dis. 1999; 29:1570-1571.
    43. Chen YC, Chuang YC, Chang CC, Jeang CL, Chang NC. A K+ uptake protein, TrKA, is required for serum, protamine, and polymyxin B resistance in Vibrio vulnificus. Infect Immun. 2004; 72:629-636.
    44. Simon R, Priefer U, Puhler A. A broad host range mobilization system for in vivo genetic engineering :transposon mutagenesis in Gram negative bacteria. Biotechnology.1983; 1:784-791.
    45 Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual ,2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1989.
    46. Reed L J, Muench H. A simple method of estimating the 50% endpointa. Am J Hyg. 1938; 27:493-397.
    47. Howard M, O’Garra A, Ishida H, Malefyt RD, Vries JD. Biological properties of interleukin 10. J. Clin Immunol. 1992; 12:239.
    48. Tekamp-Olsen P, Gallegos C, Bauri D et al. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologue. J Exp Med. 1990; 172:911.
    49. Lai YC, Peng HL, Chang HY. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol. 2003; 185:788-800.
    50.Lau HY, Clegg S, Moore TA. Identification of Klesiella pneumoniae genes uniquely expressed in a strain virulent using a murine model of bacterial pneumonia. Microb pathog. 2007; 4:148-155.
    Appears in Collections:[生物科技系(所)] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2045View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback