Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/9096
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18076/20274 (89%)
Visitors : 5321310      Online Users : 748
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/9096


    Title: 秦皮素促進成骨細胞分化以及阻斷發炎性細胞激素所導致成骨細胞凋亡之作用機制
    Fraxetin stimulates differentiation and inhibits the induction of inflammatory cytokines-mediated apoptosis in human osteoblasts
    Authors: 黃郁婷
    Yu-ting Huang
    Contributors: 張竣凱
    郭柏麟
    嘉南藥理科技大學:生物科技研究所
    Keywords: 成骨細胞
    1.Dempster DW, Lindsay R. Pathogenesis of osteoporosis. Lancet. 1993;341:797-801. 2.Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone. 2004;35:1003-12. 3.Eriksen EF, Kassem M, Brixen K. Growth hormone and insulin-like growth factors as anabolic therapies for osteoporosis. Horm Res. 1993;40:95-8. 4.Conference Report. Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94:646-50. 5.Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423:349-55. 6.Goltzman D. Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov. 2002;1:784-96. 7.Whitfield JF. How to grow bone to treat osteoporosis and mend fractures. Curr Rheumatol Rep. 2003;5:45-56. 8.Whitfield JF, Morley P, Willick GE. Bone growth stimulators. New tools for treating bone loss and mending fractures. Vitam Horm. 2002;65:1-80. 9.Sykaras N, Opperman LA. Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? J Oral Sci. 2003;45:57-73. 10.Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3:807-21. 11.Liu CJ, Chang E, Yu J, Carlson CS, Prazak L, Yu XP, Ding B, Lengyel P, Di Cesare PE. The interferon-inducible p204 protein acts as a transcriptional coactivator of Cbfa1 and enhances osteoblast differentiation. J Biol Chem. 2005;280:2788-96 12.Nohe A, Keating E, Knaus P, Petersen NO. Signal transduction of bone morphogenetic protein receptors. Cell Signal. 2004;16:291-9. 13.Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells. 2002;7:1191-204. 14.Luo Q, Kang Q, Si W, Jiang W, Park JK, Peng Y, Li X, Luu HH, Luo J, Montag AG, Haydon RC, He TC. Connective tissue growth factor (CTGF) is regulated by Wnt and BMP signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 2004;279:55958-68. 15.Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, Itaka K, Takato T, Nakamura K, Okayama H. Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol Cell Biol. 2004;24:6560-8. 16.Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003;88:446-54. 17.Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344:907-16. 18.Eguchi K. Apoptosis in autoimmune diseases. Intern Med. 2001;40:275-84. 19.Rifas L, Avioli LV. A novel T cell cytokine stimulates interleukin-6 in human osteoblastic cells. J Bone Mine Res. 1999;14:1096-1103. 20.Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423:349-55. 21.Tanaka Y, Morimoto I, Nakano Y, Okada Y, Hirota S, Nomura S, Nakamura T, Eto S. Osteoblasts are regulated by the cellular adhesion through ICAM-1 and VCAM-1. J Bone Miner Res. 1995;10:1462-69. 22.Hock JM, Krishnan V, Onyia JE, Bidwell JP, Milas J, Stanislaus D. Osteoblast apoptosis and bone turnover. J Bone Miner Res. 2001;16:975-84. 23.Okada Y, Tanaka Y. Immune signals in the context of secondary osteoporosis. Histol Histopathol. 2004;19:863-66. 24.Kawakami A, Eguchi K, Matsuoka N, Tsuboi M, Koji T, Urayama S, et al. Fas and Fas ligand interaction is necessary for human osteoblast apoptosis. J Bone Miner Res. 1997;12:1637-46. 25.Tsuboi M, Kawakami A, Nakashima T, Matsuoka N, Urayama S, Kawabe Y, Fujiyama K, Kiriyama T, Aoyagi T, Maeda K, Eguchi K. Tumor necrosis factor-alpha and interleukin-1beta increase the Fas-mediated apoptosis of human osteoblasts. J Lab Clin Med. 1999;134:222-31. 26.Lemonnier J, Hay E, Delannoy P, Fromigue O, Lomri A, Modrowski D, et al. Increased osteoblast apoptosis in apert craniosynostosis: role of protein kinase C and interleukin-1. Am J Pathol. 2001;158:1833-42. 27.Silvestris F, Cafforio P, Calvani N, Dammacco F. 2004. Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. Br J Haematol. 2004;126:475-86. 28.Molina-Jimenez MF, Sanchez-Reus MI, Andres D, Cascales M, Benedi J. Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells. Brain research. 2004;1009:9-16. 29.Fernandez-Puntero B, Barroso I, Iglesias I, Benedi J, Villar, A. Antioxidant activity of Fraxetin: in vivo and ex vivo parameters in normal situation versus induced stress. Biol Pharm Bull . 2001;24:777-84. 30.Martin-Aragon, S, Benedi J.M, Villar A.M. Modifications on antioxidant capacity and lipid peroxidation in mice under fraxetin treatment. J Pharm Pharmacol. 1997;49:49-52. 31.Paya M, Goodwin PA, De Las Heras B, Hoult JR. Superoxide scavenging activity in leukocytes and absence of cellular toxicity of a series of coumarins. Biochem Pharmacol. 1994;48:445-51. 32.Kimura Y, Okuda H, Arichi S, Baba K, Kozawa M. Inhibition of the formation of 5-hydroxy-6,8,11,14-eicosatetraenoic acid from arachidonic acid in polymorphonuclear leukocytes by various coumarins. Biochim Biophys Acta. 1985;834:224-29. 33.Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazoliu salt XTT. J Immunol Methods. 1991 142:257-65. 34.Goodwin CJ, Holt SJ, Downes S, Marshall NJ.Microculture tetrazolium assay: a comparison between two new tetrazolium salts, XTT and MTS. J Immunol Methods. 1995;179:95-103. 35.Marom R, Shur I, Solomon R, Benayahu D. Characterization of adhesion anddifferentiation markers of osteogenic marrow stromal cells. J Cell Physiol. 2005;202:41-8. 36.Kadowaki A, Tsukazaki T, Hirata K, Shibata Y, Okubo Y, Bessho K, et al. Isolation and characterization of a mesenchymal cell line that differentiates into osteoblasts in response to BMP-2 from calvariae of GFP transgenic mice. Bone. 2004;34:993-1003. 37.Green S, Anstiss CL, Fishman WH. Automated differential isoenzyme analysis. II. The fractionation of serum alkaline phosphatases into "liver", "intestinal" and "other" components. Enzymologia. 1971;41:9-26. 38.Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J;Committee of Scientific Advisors of the International Osteoporosis Foundation]. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11 Suppl 6:S2-17. Review 39.D’Alonzo RC, Kowalski AJ, Denhardt DT, Nickols GA, Partridge NC. Regulation of collagenase-3 and osteocalcin gene expression by collagen and osteopontin in differentiation MC3T3-E1 cells. J Biol Chem. 2002;277:24788-98. 40.Suzuki A, Guicheux J, Palmer G, Miura Y, Oiso Y, Bonjour JP, Caverzasio J. Caverzasio J. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone. 2002;30:91-8. 41.Delmas PD, Christiansen C, Mann KG, Price PA. Bone Gla protein (osteocalcin) assay standardization report. J Bone Miner Res. 1990;5:5-11. 42.Kuo PL, Hsu Y L, Chang C H, Chang J K. Osthole-mediated cell differentiation through BMP-2/p38 and ERK1/2 pathway in human osteoblast cells. J Pharmacol Exp Ther. 2005;314:1290-9. 43.Tuli R, Seghatoleslami MR, Tuli S, Howard MS, Danielson KG, Tuan RS. P38 MAP kinase regulation of AP-2 binding in TGF-beta 1-stimulated chondrogenesis of humantrabecular bone-derived cells. Ann N Y Acad Sci. 2002;961:172-7. 44.Chae HJ, Jeong BJ, Ha MS, Lee JK, Byun JO, Jung WY, Yun YG, Lee DG, Oh SH, Chae SW, Kwak YG, Kim HH, Lee ZH, Kim HR. ERK MAP kinase is required in 1,25(OH)2D3-induced differentiation in human osteoblasts. Immunopharmacol Immunotoxicol. 2002;24:31-41. 45.Kikuchi S, Hiraide H, Tamakuma S, Yamamoto M. Expression of wild-type p53 tumor suppressor gene and its possible involvement in the apoptosis of thyroid tumor. Surg Today. 1997;27:226-33. 46.Salgame P, Varadhachary AS, Primiano LL, Fincke JE, Muller S, Monestier M. An ELISA for detection of apoptosis. Nucleic Acid Res. 1997;25:680-1. 47.Hsu YL, Kuo PL, Lin CC. Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis. Biochem Pharmacol. 2004;67:823-9. 48.Kuo PL, Hsu YL, Lin TC, Lin CC. Prodelphinidin B-2 3,3’-di-O-gallate from Myrica rubra inhibits proliferation of A549 carcinoma cells via blocking cell cycle progression and inducing apoptosis. Eur J Pharmacol. 2004;501:41-8. 49.Sinicrope FA, Pening RC, Tang XM. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis is inhibited by Bcl-2 but restored by the small molecule Bcl-2 inhibitor, HA 14-1, in human colon cancer cells. Clin Cancer Res. 2004;10:8284-92. 50.Tarkowski E, Rosengren L, Blomstrand C, Jensen C, Ekholm S, Tarkowski A. Intrathecal expression of apoptosis regulating apoptosis in acute stroke. Stroke. 1999;30:321-7. 51.Jia TL, Wang HZ, Xie LP, Wang XY, Zhang RQ. Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production. Biochem Pharmacol. 2003;65:709-1. 52.Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone. 1995;17(2 Suppl):77S-83S. Review. 53.Qu Q, Perala-Heape M, Kapanen A, Dahllund J, Salo J, Vaananen HK, et al. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone. 1998;22:201-9. 54.Qu Q, Perala-Heape M, Kapanen A, Dahllund J, Salo J, Vaananen HK, Harkonen P. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone. 1998;22:201-9. 55.Hallahan AR, Pritchard JI, Chandraratna RA, Ellenbogen RG, Geyer JR, Overland RP, et al. Nat Med. 2003;9:1033-38. 56.Ducy P, Schinke T, Karsenty G.. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000;289:1501-4. Review 57.Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332:305-11. Review 58.Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504-8. Review 59.Sanchez-Reus MI, Peinado II, Molina-Jimenez MF, Benedi J. Fraxetin prevents rotenone-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Neurosci Res. 2005;53:48-56. 60.Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr Pharm Des. 2004;10:3813-33. Review 61.Liu ZQ, Yu W, Liu ZL. Antioxidative and prooxidative effects of coumarin derivatives on free radical initiated and photosensitized peroxidation of human low-density lipoprotein. Chem Phys Lipids. 1999;103:125-35. 62.Paya M, Halliwell B, Hoult JR. Peroxyl radical scavenging by a series of coumarins. Free Radic Res Commun. 1992;17:293-8. 63.Paya M, Ferrandiz ML, Miralles F, Montesinos C, Ubeda A, Alcaraz MJ. Effects of coumarin derivatives on superoxide anion generation. Arzneimittelforschung. 1993;43:655-8. 64.Molina-Jimenez MF, Sanchez-Reus MI, Benedi J. Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: comparison with N-acetylcysteine. Eur J Pharmacol. 2003;472:81-7. 65.Karsenty G. Role of Cbfa1 in osteoblast differentiation and function. Semin Cell Dev Biol. 2000;11:343-6. Review 66.Xiao Y, Haase H, Young WG, Bartold PM. Development and transplantation of a mineralized matrix formed by osteoblasts in vitro for bone regeneration. Cell Transplant. 2004;13:15-25. 67.Wada Y, Kataoka H, Yokose S, Ishizuya T, Miyazono K, Gao YH, Shibasaki Y, Yamaguchi A. Changes in osteoblast phenotype during differentiation of enzymatically isolated rat calvaria cells. Bone. 1998;22:479-85. 68.Maeda T, Matsunuma A, Kurahashi I, Yanagawa T, Yoshida H, Horiuchi N. 2004. Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells. J Cell Biochem. 2004;92:458-71. 69.Romas E, Gillespie MT, Martin TJ. 2002. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone. 2002;30:340-6. 70.Nakashima T, Sasaki H, Tsuboi M, Kawakami A, Fujiyama K, Kiriyama T, Eguchi K, Ichikawa M, Nagataki S. Inhibitory effect of glucocorticoid for osteoblast apoptosis induced by activated peripheral blood mononuclear cells. Endocrinology. 1998;139:2032-40. 71.Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770-76. 72.Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449-56. 73.Bratton SB, MacFarlane M, Cain K, Cohen GM. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res. 2000;256:27-33. 74.Tran SE, Meinander A, Holmstrom TH, Rivero-Muller A, Heiskanen KM, Linnau EK, et al. Heat stress downregulates FLIP and sensitizes cells to Fas receptor-mediated apoptosis. Cell Death Differ. 2003;10:1137-47.
    細胞分化
    鹼性磷酸酶
    骨鈣素
    成型蛋白2
    骨質疏鬆症
    腫瘤壞死因子
    白介素-1
    Fraxetin
    Osteoblasts
    Cell differentiation
    ALP
    Date: 2006
    Issue Date: 2008-11-24 17:01:32 (UTC+8)
    Abstract: 秦皮素(7,8-dihydroxy-6-methoxy coumarin),是香豆素(coumarin)的衍生物。本研究分析秦皮素對人類成骨細胞株的分化作用中顯示,秦皮素能增加ALP活性與osteocalcin的分泌。而推測秦皮素會促進早期以及晚期成骨細胞的分化。我們亦探討秦皮素對於BMP-2以及BMP-4誘導細胞分化作用的情形,研究顯示BMP-2或BMP-4與秦皮素併用時,對細胞株ALP活性以及osteocalcin的分泌並不具有加成作用。然而BMP的抑制劑Noggin,可明顯阻斷由BMP-2以及BMP-4與秦皮素所誘導的ALP活性與osteocalcin的分泌。由此顯示秦皮素誘導成骨細胞的成熟與分化乃透過增加BMP-2以及BMP-4的表現所致。因此,秦皮素可做為預防以及治療骨質疏鬆症的天然藥物。
    在發炎性關節腔疾病的病人,例如類風濕性關節炎的患者,成骨細胞的存活對於這些疾病引起骨質疏鬆症的形成扮演著決定性的因素。在本研究中乃分析秦皮素是否會影響發炎性細胞激素所誘導成骨細胞的凋亡。研究顯示TNF-ㄘ呰L-1β會加強經anti-Fas IgM處理之MG-63的細胞凋亡,但是,單獨給予TNF-ㄘ呰L-1β並不會引起成骨細胞的凋亡。秦皮素不僅會抑制anti-Fas IgM所誘導的細胞凋亡,也會阻斷Fas ligand與TNF-ㄘ呰L-1β誘導細胞凋亡的協同作用。
    在探討秦皮素抑制成骨細胞凋亡之作用機制方面,秦皮素主要是抑制由TNF-ㄘMIL-1β所調節之Fas表現活性,同時並促進FLIP的表現而抑制caspase-8、caspase-3的活化作用。實驗結果顯示秦皮素可藉由抑制發炎性細胞激素所導致成骨細胞的凋亡,而預防骨質疏鬆症。
    Fraxetin (7,8-dihydroxy-6-methox coumarin), a coumarin derivative, was investigated for its effects on differentiation of osteoblasts. By means of alkaline phosphatase (ALP) activity and osteocalcin ELISA assay, we have shown that fraxetin exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Alkaline phosphatase and osteocalcin are phenotypic markers for early-stage differentiated osteoblasts and terminally differentiated osteoblasts, respectively. Our results indicated that fraxetin stimulated osteoblast differentiation at various stages (from osteoprogenitors to terminally differentiated osteoblasts). Induction of differentiation by fraxetin was associated with increased BMP-2 and BMP-4 productions. Addition of purified BMP-2 and BMP-4 proteins did not increase the upregulation of ALP activity and osteocalcin secretion by fraxetin, whereas the BMPs antagonist noggin blocked both fraxetin and BMP-2 and BMP-4 mediated ALP activity and osteocalcin secretion enhancement, indicating that BMP-2 and BMP-4 productions are required in fraxetin-mediated osteoblast maturation and differentiation. These findings are novel and may be important in the treatment and prevention of osteoporosis.
    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients with inflamed synovium, such as in rheumatoid arthritis (RA). By means of alkaline phosphatase (ALP) activity and osteocalcin ELISA assay, this study have shown that fraxetin exhibits a significant induction of differentiation in the human osteoblast-like cell line MG-63. In addition, this study also assessed whether fraxetin affects inflammatory cytokine-mediated apoptosis in osteoblast cells. TNF-?or IL-1β enhance apoptotic DNA fragmentation in anti-Fas IgM-treated MG-63 cells by increasing Fas receptor expression. However, TNF-?or IL-1β treatment alone does not induce apoptosis. Treatment of MG-63 cells with fraxetin not only inhibited anti-Fas IgM-induced apoptosis, but also blocked the synergetic effect of anti-Fas IgM with TNF-?or IL-1β on cell death. The apoptotic inhibition of fraxetin is associated with inhibition of TNF-?and IL-1β-mediated Fas expression and enhancement of FLIP expression, resulting in a decrease of caspase-8 and caspase-3 activation. These results indicate a potential use of fraxetin in preventing osteoporosis by inhibiting inflammatory cytokine-mediated apoptosis in osteoblast cells.
    Relation: 校內公開,校外永不公開
    Appears in Collections:[Dept. of Biotechnology (including master's program)] Dissertations and Theses

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1145View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback