English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17775/20116 (88%)
Visitors : 9494635      Online Users : 292
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.cnu.edu.tw/handle/310902800/4458

    標題: Norepinephrine奈米微粒製劑在經皮吸收之研究
    Study on the Use of Norepinephrine Nanoparticle Preparation for Transdermal Absorption
    作者: 王俊傑
    Chiun-Chieh Wang
    貢獻者: 林恆弘
    關鍵字: 新腎上腺素
    transdermal absorption
    日期: 2003
    上傳時間: 2008-10-08 15:45:44 (UTC+8)
    摘要: 本研究主要為探討norepinephrine親水凝膠奈米微粒製劑之製備及其特性。含藥奈米微粒
    產生。體外釋離試驗中,微粒型藥物則呈現30-40% 之初期釋離,其持續釋離時間可長達24
    透皮速率及通透量,並減少透皮時間。而界面活性劑benzalkonium chloride及sodium
    lauryl sulfate之促進穿皮作用均較tween 80佳,其使用濃度以不高於1%為宜。
    This study described the preparation and characterization of hydrogel
    nanoparticles containing the neurochemical messenger norepinephrine (NE). NE
    as a model drug was encapsulated in hydrogel nanospheres using homogenizer.
    The size of the NE-hydrogel nanoparticles was evaluated by using Zetasizer
    3000HS particle size analyzer. The rheological properties of ointments
    including NE-hydrogel nanoparticles were characterized by Cone and Plate
    Viscometer. All drug-polymer interactions and the skins were assessed by
    Differential Scanning Calorimetry (DSC). For these nanoparticles, drug
    loading, in vitro release of drug from the nanoparticles, drug concentration
    after transdermal absorption , cumulative amount of drug in skin and long-term
    stability determination were quantified by high performance liquid
    chromatography (HPLC). The results revealed that particle size, encapsulation
    efficiency, in vitro release and transdermal absorption properties of the
    nanoparticles were affected by various hydrogels, preparative processes,
    surfactants and drug concentrations. The measured particle size distribution
    was ranged from 40nm to 500nm. The time-depentent behavior of ointments
    including NE-hydrogel nanoparticles was mentioned to as 〝Dilatant〞 flow and
    showed a shear-thickening liquid. In regard to the long-term stability, the
    results suggested that the product containing NE nanoparticles ought to be
    stored in the condition of lyophilized powder at lower temperature and
    recovered by adding double deionized water before used. The DSC determinations
    indicated that the physical and chemical interaction did not occur among the
    components during manufacturing process and reconstituted lyophilized powders.
    The encapsulation efficiency of NE in hydrogel nanoparticles was reached to 81.
    32%. On the basis of in vitro release study, it revealed that NE was
    encapsulated in the hydrogel matrix, following the initial burst release of
    30% to 40%, the release was sustained over the 24-hours study period. For in
    vitro transdermal absorption study, the skins were treated as well as the
    ointments were added with and without different concentrations (0.5% and 1%)
    of various surfactants (benzalkonium chloride, sodium lauryl sulfate and tween
    80), the experimental results revealed that the rapid permeability was
    correlated with surfactants and drug concentration, the skin barrier property
    was significantly compromised with benzalkonium chloride and sodium lauryl
    sulfate treatment, tween 80 had a lesser effect on skin barrier property
    compared to benzalkonium chloride and sodium lauryl sulfate ( 1% > 0.5%,
    benzalkonium chloride > sodium lauryl sulfate > tween 80).
    關聯: 校內外完全公開
    Appears in Collections:[生物科技系(所)] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in CNU IR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback