Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/34849
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18240/20438 (89%)
Visitors : 5480249      Online Users : 1013
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    CNU IR > Offices > 456 >  Item 310902800/34849
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/34849


    Title: The in vitro and in vivo anticancer activities of Antrodia salmonea through inhibition of metastasis and induction of ROS-mediated apoptotic and autophagic cell death in human glioblastoma cells
    Authors: Lin, Yi-Pin
    Hseu, You-Cheng
    Thiyagarajan, Varadharajan
    Vadivalagan, Chithravel
    Pandey, Sudhir
    Lin, Kai-Yuan
    Hsu, Yuan-Tai
    Liao, Jiunn-Wang
    Lee, Chuan-Chen
    Yang, Hsin-Ling
    Contributors: China Med Univ, Inst Nutr, Coll Hlth Care
    China Med Univ, Coll Pharm, Dept Cosmeceut, Shui Nan Campus
    Asia Univ, Dept Hlth & Nutr Biotechnol
    China Med Univ, Chinese Med Res Ctr
    China Med Univ, Res Ctr Chinese Herbal Med
    Mahidol Univ, Fac Pharm, Dept Pharmacol
    Chi Mei Med Ctr, Dept Med Res
    Chia Nan Univ Pharm & Sci, Dept Biotechnol
    Natl Chung Hsing Univ, Grad Inst Vet Pathol
    Keywords: Antrodia salmonea
    Glioblastoma
    Autophagy
    Apoptosis
    ROS
    EMT
    Date: 2023
    Issue Date: 2024-12-25 11:04:29 (UTC+8)
    Publisher: ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
    Abstract: Background:: Antrodia salmonea (AS) exhibits anticancer activities against various cancers.Objective: This study investigated the anticancer activities of AS on human glioblastoma (GBM8401 and U87MG) cells both in vitro and in vivo and explained the underlying molecular mechanism.Methods: MTT, colony formation, migration/invasion assay, immunoblotting, immunofluorescence, TUNEL, Annexin V/PI staining, AO staining, GFP-LC3 transfection, TEM, qPCR, siLC3, DCFH2-DA assay, and xenograftednude mice were used to assess the potential of AS therapy.Results: AS treatment retarded growth and suppressed colony formation in glioblastoma cells. AS attenuates EMT by suppressing invasion and migration, increasing E-cadherin expression, decreasing Twist, Snail, and N-cadherin expression, and inhibiting Wnt/beta-catenin pathways in GBM8401 and U87MG cells. Furthermore, AS induced apoptosis by activating caspase-3, cleaving PARP, and dysregulating Bax and Bcl-2 in both cell lines. TUNEL assay and Annexin V/PI staining indicated AS-mediated late apoptosis. Interestingly, AS induced autophagic cell death by LC3-II accumulation, AVO formation, autophagosome GFP-LC3 puncta, p62/SQSTM1 expression, and ATG4B inhibition in GBM8401 and U87MG cells. TEM data revealed that AS favored autophagosome and autolysosome formation. The autophagy inhibitors 3-MA/CQ and LC3 knockdown suppressed AS-induced apoptosis in glioblastoma cells, indicating that the inhibition of autophagy decreased AS-induced apoptosis. Notably, the antioxidant N-acetylcysteine (NAC) inhibited AS-mediated ROS production and AS induced apoptotic and autophagic cell death. Furthermore, AS induced ROS-mediated inhibition of the PI3K/ AKT/mTOR signaling pathway. AS reduced the tumor burden in GBM8401-xenografted nude mice and significantly modulated tumor xenografts by inducing anti-EMT, apoptosis, and autophagy. AS could be a potential antitumor agent in human glioblastoma treatment.
    Relation: Biomedicine & Pharmacotherapy, v.158, Article 114178
    Appears in Collections:[Offices] 456

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback