Loading...
|
Please use this identifier to cite or link to this item:
https://ir.cnu.edu.tw/handle/310902800/34820
|
Title: | Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus |
Authors: | Malak, Nosheen Alotaibi, Bader S. Khan, Afshan Khan, Adil Ullah, Shakir Nasreen, Nasreen Niaz, Sadaf Chen, Chien-Chin |
Contributors: | Abdul Wali Khan Univ Mardan, Dept Zool Shaqra Univ, Coll Appl Med Sci, Dept Labs Sci Bacha Khan Univ, Dept Bot & Zool Natl Cheng Kung Univ, Coll Biosci & Biotechnol, Dept Biotechnol & Bioind Sci Chia Yi Christian Hosp, Ditmanson Med Fdn, Dept Pathol Chia Nan Univ Pharm & Sci, Dept Cosmet Sci Natl Chung Hsing Univ, Rong Hsing Res Ctr Translat Med, PhD Program Translat Med |
Keywords: | density functional theory flavonoids molecular docking Rhipicephalus microplus acetylcholinesterase 1 (RmAChE1) Rhipicephalus microplus triose-phosphate isomerase (RmTIM) tick tick-borne disease |
Date: | 2023 |
Issue Date: | 2024-12-25 11:04:03 (UTC+8) |
Publisher: | MDPI |
Abstract: | Ticks and tick-borne diseases constitute a substantial hazard to the livestock industry. The rising costs and lack of availability of synthetic chemical acaricides for farmers with limited resources, tick resistance to current acaricides, and residual issues in meat and milk consumed by humans further aggravate the situation. Developing innovative, eco-friendly tick management techniques, such as natural products and commodities, is vital. Similarly, searching for effective and feasible treatments for tick-borne diseases is essential. Flavonoids are a class of natural chemicals with multiple bioactivities, including the inhibition of enzymes. We selected eighty flavonoids having enzyme inhibitory, insecticide, and pesticide properties. Flavonoids' inhibitory effects on the acetylcholinesterase (AChE1) and triose-phosphate isomerase (TIM) proteins of Rhipicephalus microplus were examined utilizing a molecular docking approach. Our research demonstrated that flavonoids interact with the active areas of proteins. Seven flavonoids (methylenebisphloridzin, thearubigin, fortunellin, quercetagetin-7-O-(6-O-caffeoyl-beta-d-glucopyranoside), quercetagetin-7-O-(6-O-p-coumaroyl-beta-glucopyranoside), rutin, and kaempferol 3-neohesperidoside) were the most potent AChE1 inhibitors, while the other three flavonoids (quercetagetin-7-O-(6-O-caffeoyl-beta-d-glucopyranoside), isorhamnetin, and liquiritin) were the potent inhibitors of TIM. These computationally-driven discoveries are beneficial and can be utilized in assessing drug bioavailability in both in vitro and in vivo settings. This knowledge can create new strategies for managing ticks and tick-borne diseases. |
Relation: | Molecules, v.28, n.8, Article 3606 |
Appears in Collections: | [Dept. of Cosmetic Science and institute of cosmetic science] Periodical Articles
|
Files in This Item:
File |
Description |
Size | Format | |
index.html | | 0Kb | HTML | 139 | View/Open | molecules28083606.pdf | | 9570Kb | Adobe PDF | 58 | View/Open |
|
All items in CNU IR are protected by copyright, with all rights reserved.
|