Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/34692
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18076/20274 (89%)
Visitors : 5266178      Online Users : 1290
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/34692


    Title: Development and validation of a web-based prediction tool on minor physical anomalies for schizophrenia
    Authors: Wang, Xin-Yu
    Lin, Jin-Jia
    Lu, Ming-Kun
    Jang, Fong-Lin
    Tseng, Huai-Hsuan
    Chen, Po-See
    Chen, Po-Fan
    Chang, Wei-Hung
    Huang, Chih-Chun
    Lu, Ke-Ming
    Tan, Hung-Pin
    Lin, Sheng-Hsiang
    Contributors: National Cheng Kung University
    Chi Mei Hospital
    Department of Applied Life Science and Health, Chia Nan University of Pharmacy & Science
    National Cheng Kung University
    National Cheng Kung University Hospital
    National Cheng Kung University
    National Cheng Kung University Hospital
    National Cheng Kung University
    National Cheng Kung University
    National Cheng Kung University Hospital
    National Cheng Kung University
    National Cheng Kung University
    National Cheng Kung University
    National Cheng Kung University Hospital
    Keywords: neurodevelopmental basis
    craniofacial measures
    bipolar
    prevalence
    relatives
    spectrum
    disorder
    common
    palate
    scale
    Date: 2022
    Issue Date: 2023-12-11 14:05:25 (UTC+8)
    Publisher: NATURE PORTFOLIO
    Abstract: In support of the neurodevelopmental model of schizophrenia, minor physical anomalies (MPAs) have been suggested as biomarkers and potential pathophysiological significance for schizophrenia. However, an integrated, clinically useful tool that used qualitative and quantitative MPAs to visualize and predict schizophrenia risk while characterizing the degree of importance of MPA items was lacking. We recruited a training set and a validation set, including 463 schizophrenia patients and 281 healthy controls to conduct logistic regression and the least absolute shrinkage and selection operator (Lasso) regression to select the best parameters of MPAs and constructed nomograms. Two nomograms were built to show the weights of these predictors. In the logistic regression model, 11 out of a total of 68 parameters were identified as the best MPA items for distinguishing between patients with schizophrenia and controls, including hair whorls, epicanthus, adherent ear lobes, high palate, furrowed tongue, hyperconvex fingernails, a large gap between first and second toes, skull height, nasal width, mouth width, and palate width. The Lasso regression model included the same variables of the logistic regression model, except for nasal width, and further included two items (interpupillary distance and soft ears) to assess the risk of schizophrenia. The results of the validation dataset verified the efficacy of the nomograms with the area under the curve 0.84 and 0.85 in the logistic regression model and lasso regression model, respectively. This study provides an easy-to-use tool based on validated risk models of schizophrenia and reflects a divergence in development between schizophrenia patients and healthy controls (https://www.szprediction.net/).
    Relation: Schizophrenia, v.8, n.1, Article.4
    Appears in Collections:[Dept. of Life and Health Science] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML261View/Open
    s41537-021-00198-5.pdf635KbAdobe PDF81View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback