Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/34675
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18281/20508 (89%)
Visitors : 19497741      Online Users : 1079
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/34675


    题名: Skin damage induced by zinc oxide nanoparticles combined with UVB is mediated by activating cell pyroptosis via the NLRP3 inflammasome-autophagy-exosomal pathway
    作者: Chen, Yu-Ying
    Lee, Yu-Hsuan
    Wang, Bour-, Jr.
    Chen, Rong-Jane
    Wang, Ying-Jan
    贡献者: National Cheng Kung University
    China Medical University Taiwan
    Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy & Science
    National Cheng Kung University
    National Cheng Kung University Hospital
    National Cheng Kung University
    China Medical University Taiwan
    China Medical University Hospital - Taiwan
    关键词: antibacterial activity
    titanium-dioxide
    in-vitro
    penetration
    size
    pterostilbene
    cytotoxicity
    dysfunction
    inhibition
    toxicity
    日期: 2022
    上传时间: 2023-12-11 14:04:35 (UTC+8)
    出版者: BMC
    摘要: Background Zinc oxide nanoparticles (ZnONPs) are widely used nanomaterial in personal cosmetics, such as skin creams and sunscreens, due to their whitening properties and strong UV light absorption. However, the safety issues and the hazards of ZnONPs, which can be taken up by the skin and cause skin toxicity, are still unclear. From a chemoprevention point of view, pterostilbene (PT) has been reported to prevent skin damage effectively by its anti-inflammatory and autophagy inducer effect. This study aims to determine the skin toxicity and the potential mechanisms of UVB and ZnONPs exposure and the preventive effect of PT. Results The co-exposure of UVB and ZnONPs elicit NLRP3 inflammasome activation and pyroptosis in keratinocytes. Furthermore, exposure to both UVB and ZnONPs also disrupts cellular autophagy, which increases cell exosome release. In vivo UVB and ZnONPs exposure triggers skin toxicity, as indicated by increased histological injury, skin thickness and transepidermal water loss. Notably, the NLRP3 inflammasome-mediated pyroptosis are also activated during exposure. Topical application of pterostilbene attenuates NLRP3 inflammasome activation and pyroptosis by decreasing ROS generation and mitochondrial ROS (mtROS) levels. In addition to its antioxidant effect, PT also reversed autophagy abnormalities by restoring normal autophagic flux and decreasing NLRP3 inflammasome-loaded exosome release. Conclusions Our findings reveal that ZnONPs induce skin damage in conjunction with UVB exposure. This process involves an interplay of inflammasomes, pyroptosis, autophagy dysfunction, and exosomes in skin toxicity. PT alleviates skin inflammation by regulating the inflammasome-autophagy-exosome pathway, a finding which could prove valuable when further evaluating ZnONPs effects for cosmetic applications.
    關聯: PARTICLE AND FIBRE TOXICOLOGY, v.19, Article number: 2
    显示于类别:[Dept. of Cosmetic Science and institute of cosmetic science] Other Projects

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML549检视/开启
    s12989-021-00443-w.pdf9907KbAdobe PDF172检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈