English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18055/20253 (89%)
造訪人次 : 25101992      線上人數 : 571
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/34547


    標題: Ziprasidone Induces Rabbit Atrium Arrhythmogenesis via Modification of Oxidative Stress and Sodium/Calcium Homeostasis
    作者: Tai, Buh-Yuan
    Lu, Ming-Kun
    Yang, Hsiang-Yu
    Tsai, Chien-Sung
    Lin, Chih-Yuan
    貢獻者: Department of Pharmacy, Chia Nan University of Pharmacy & Science
    National Defense Medical Center
    Tri-Service General Hospital
    關鍵字: sarcoplasmic-reticulum ca2+
    late sodium current
    protein-kinase-ii
    ventricular myocytes
    leak
    camkii
    risk
    fibrillation
    inhibition
    sudden
    日期: 2022
    上傳時間: 2023-12-11 13:57:14 (UTC+8)
    出版者: MDPI
    摘要: Background: Atypical antipsychotics increase the risk of atrial arrhythmias and sudden cardiac death. This study investigated whether ziprasidone, a second-generation antipsychotic, affected intracellular Ca2+ and Na+ regulation and oxidative stress, providing proarrhythmogenic substrates in atriums. Methods: Electromechanical analyses of rabbit atrial tissues were conducted. Intracellular Ca2+ monitoring using Fluo-3, the patch-clamp method for ionic current recordings, and a fluorescence study for the detection of reactive oxygen species and intracellular Na+ levels were conducted in enzymatically dissociated atrial myocytes. Results: Ziprasidone-treated atriums showed sustained triggered activities after rapid pacing, which were inhibited by KN-93 and ranolazine. A reduced peak L-type Ca2+ channel current and enhanced late Na+ current were observed in ziprasidone-treated atrial myocytes, together with an increased cytosolic Na+ level. KN-93 suppressed the enhanced late Na+ current in ziprasidone-treated atrial myocytes. Atrial myocytes treated with ziprasidone showed reduced Ca2+ transient amplitudes and sarcoplasmic reticulum (SR) Ca2+ stores, and increased SR Ca2+ leakage. Cytosolic and mitochondrial reactive oxygen species production was increased in atrial myocytes treated with ziprasidone. TNF-alpha and NLRP3 were upregulated in ziprasidone-treated myocytes, and the level of phosphorylated calcium/calmodulin-dependent protein kinase II protein was increased. Conclusions: Our results suggest that ziprasidone increases the occurrence of atrial triggered activity and causes intracellular Ca2+ and Na+ dysregulation, which may result from enhanced oxidative stress and activation of the TNF-alpha/NLRP3 inflammasome pathway in ziprasidone-treated myocytes.
    關聯: BIOMEDICINES, v.10, n.5, pp.976
    顯示於類別:[藥學系(所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    biomedicines10050976.pdf2932KbAdobe PDF17檢視/開啟
    index.html0KbHTML89檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋