English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18074/20272 (89%)
造訪人次 : 4073073      線上人數 : 1152
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/34477


    標題: Molecular characteristics and in vitro effects of antimicrobial combinations on planktonic and biofilm forms of Elizabethkingia anophelis
    作者: Tang, Hung-Jen
    Lin, Yi-Tsung
    Chen, Chi-Chung
    Chen, Chih-Wei
    Lu, Ying-Chen
    Ko, Wen-Chien
    Chen, Hung-Jui
    Su, Bo-An
    Chang, Ping-Chin
    Chuang, Yin-Ching
    Lai, Chih-Cheng
    貢獻者: Chi Mei Med Ctr, Dept Med
    Chi Mei Med Ctr, Dept Med Res
    Taipei Vet Gen Hosp, Dept Med, Div Infect Dis
    Natl Yang Ming Univ, Inst Emergency & Crit Care Med
    Natl Chiayi Univ, Dept Food Sci
    Chi Mei Med Ctr, Dept Surg, Div Neurosurg
    Chia Nan Univ Pharm & Sci, Coll Sustainable Environm, Dept Occupat Safety & Hlth, Inst Ind Safety & Disaster Prevent
    Natl Cheng Kung Univ Hosp, Dept Internal Med
    Natl Cheng Kung Univ, Coll Med, Dept Med
    Chi Mei Med Ctr, Dept Internal Med
    Kaohsiung Vet Gen Hosp, Dept Internal Med, Tainan Branch
    關鍵字: ELECTROPHORESIS
    RESISTANCE
    FOSFOMYCIN
    OUTBREAK
    DNA
    日期: 2021
    上傳時間: 2023-11-11 11:56:16 (UTC+8)
    出版者: OXFORD UNIV PRESS
    摘要: Objectives: To investigate the in vitro activity of antibiotics against clinical Elizabethkingia anophelis isolates and to find a suitable antibiotic combination with synergistic effects to combat antibiotic-resistant E. anophelis and its associated biofilm. Methods: E. anophelis isolates were identified by 16S rRNA sequencing; 30 strains with different pulsotypes were identified and the MIC, antibiotic resistance mechanism, antibiotic combination activity and killing effects of antimicrobial agents on biofilms of these strains were determined. Results: All E. anophelis isolates were susceptible to minocycline and cefoperazone/sulbactam (1:1). More than 90% of clinical isolates were susceptible to cefoperazone/sulbactam(1:0.5), piperacillin/tazobactam and rifampicin. Some novel mutations, such as gyrA G81D, parE D585N and parC P134T, that have never been reported before, were identified. The synergistic effect was most prominent for the combination of minocycline and rifampicin, with 93.3% of their FIC index values <= 0.5, and no antagonism was observed using the chequerboard method. This synergistic effect between minocycline and rifampicin was also observed using time-killing methods for clinical E. anophelis isolates at both normal inoculum and high inoculum. Twenty-nine isolates tested positive for biofilm formation. Minocycline remained active against biofilm-embedded and biofilm-released planktonic E. anophelis cells; however, the enhanced effect of minocycline by adding rifampicin was only observed at 24 h (not at 72 and 120 h). Conclusions: Although E. anophelis was resistant to many antibiotics and could exhibit biofilm formation, minocycline showed potent in vitro activity against this pathogen and its associated biofilm.
    關聯: J ANTIMICROB CHEMOTH, v.76, n.5, pp.1205-1214
    顯示於類別:[職業安全衛生系(含防災所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    dkab018.pdf505KbAdobe PDF152檢視/開啟
    index.html0KbHTML172檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋