English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18258/20456 (89%)
造訪人次 : 6195087      線上人數 : 683
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/34068


    標題: An App for Classifying Personal Mental Illness at Workplace Using Fit Statistics and Convolutional Neural Networks: Survey-Based Quantitative Study
    作者: Yan, Yu-Hua
    Chien, Tsair-Wei
    Yeh, Yu-Tsen
    Chou, Willy
    Hsing, Shu-Chen
    貢獻者: Show Chwan Med Care Corp, Superintendent Off, Tainan Municipal Hosp
    Chia Nan Univ Pharm & Sci, Dept Hosp & Hlth Care Management
    Chi Mei Med Ctr, Dept Med Res
    St Georges Univ London, Med Sch
    Chung Shan Med Univ, Dept Phys Med & Rehabil
    Chiali Chi Mei Hosp, Dept Phys Med & Rehabil
    Chi Mei Med Ctr, Resp Therapy Unit
    關鍵字: respiratory therapist
    ELMI app
    Rasch analysis
    convolutional neural network
    mental health
    mobile phone
    日期: 2020
    上傳時間: 2022-11-18 11:22:37 (UTC+8)
    出版者: Jmir Publications, Inc
    摘要: Background: Mental illness (MI) is common among those who work in health care settings. Whether MI is related to employees' mental status at work is yet to be determined. An MI app is developed and proposed to help employees assess their mental status in the hope of detecting MI at an earlier stage. Objective: This study aims to build a model using convolutional neural networks (CNNs) and fit statistics based on 2 aspects of measures and outfit mean square errors for the automatic detection and classification of personal MI at the workplace using the emotional labor and mental health (ELMH) questionnaire, so as to equip the staff in assessing and understanding their own mental status with an app on their mobile device. Methods: We recruited 352 respiratory therapists (RTs) working in Taiwan medical centers and regional hospitals to fill out the 44-item ELMH questionnaire in March 2019. The exploratory factor analysis (EFA), Rasch analysis, and CNN were used as unsupervised and supervised learnings for (1) dividing RTs into 4 classes (ie, MI, false MI, health, and false health) and (2) building an ELMH predictive model to estimate 108 parameters of the CNN model. We calculated the prediction accuracy rate and created an app for classifying MI for RTs at the workplace as a web-based assessment. Results: We observed that (1) 8 domains in ELMH were retained by EFA, (2) 4 types of mental health (n=6, 63, 265, and 18 located in 4 quadrants) were classified using the Rasch analysis, (3) the 44-item model yields a higher accuracy rate (0.92), and (4) an MI app available for RTs predicting MI was successfully developed and demonstrated in this study. Conclusions: The 44-item model with 108 parameters was estimated by using CNN to improve the accuracy of mental health for RTs. An MI app developed to help RTs self-detect work-related MI at an early stage should be made more available and viable in the future.
    關聯: Jmir Mhealth and Uhealth, v.8, n.7, pp.16
    顯示於類別:[醫務管理系(所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    10.2196_17857.pdf883KbAdobe PDF140檢視/開啟
    index.html0KbHTML624檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋