English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18055/20253 (89%)
造訪人次 : 25095495      線上人數 : 572
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/33999


    標題: 垂直潛流式人工溼地飽和度對其污染物降解效能之影響
    Effects of Saturation on the Pollution Removal Efficiency of Vertical Subsurface Flow Constructed Wetland
    本研究為探討藉由滴濾池(Trickling filter)與垂直潛流式(Vertical subsurface flow;VSSF)結合的複合式人工溼地(Constructed wetland;CW)系統在相同反應槽高度條件下,濾料層中不同水層高度與控制組(傳統VSSF CW)水層高的比值(即所謂水層飽和度)對其系統污染降解效能之影響。實驗時,本研究共規劃設置五套溼地系統 (SSF-A、SSF-B、SSF-C、SSF-D、SSF-E),其中SSF-A為控制組系統,槽內實驗水深為100 cm,而其他對應實驗系統的水深依序為80 cm、60 cm、40 cm、20 cm等,其對應飽和度則分別為100 %、80 %、60 %、40 %與20 %,實驗期間分為2個試程,第一試程為正規試程(Stage I),而第二試程則為系統發生較嚴重阻塞狀態下之系統汙染降解之變化特性。本研究主要藉由不同水質參數來評估不同水層飽和度對系統汙染降解效能之影響,其參數包括;生化需氧?(Biochemical oxygen demand;BOD)、氨氮(Ammonia-nitrogen;NH3-N)、硝酸鹽氮(Nitrate-nitrogen,NO3–-N)、亞硝酸鹽氮(Nitrite-nitrogen;NO2–-N)、總凱氏氮(Total Kjeldahl nitrogen,TKN)、總氮(Total nitrogen;TN)和總磷(Total phosphorous;TP),藉以參數變化即可分析系統間處理效能上的差異。本研究對有機物及含氮汙染物去除效果在Stage I時符合實驗設計時預期之結果。實驗期間BOD在Stage I時SSF-A~SSF-E各系統去除率分別為50.7 %、30.6 %、28.7 %、38.2 %及65.8 %皆高於Stage II之50.1 %、-12.7 %、-25.1 %、12.1 %、27.5 %,由此可知沖洗系統對於BOD去除效果有抑制效果。而SSF-A~SSF-E各系統在Stage I時,NH3-N去除率分別為40.2 %、51.2 %、84.7 %、79.2 %及93.3 %,由此可知,飽和度越低,滴濾層傳氧效過越高,有助於NH3-N之去除。但在Stage II時,NH3-N之去除率則異常大幅提升為93 %、92.2 %、99.7 %、98.2 %及99.6 %,且NO2–-N無累積狀態,但NO3–-N則有累積現象,推測系統內的含氮汙染物去除機制可能由硝化脫硝反應轉變為厭氧氨氧化之反應或是其他相關反應。另外TKN則因氨氮去除率的變化而隨之起伏,至於TN在Stage I去除率分別為37.5 %、35.3 %、69.5 %、36.0 %及86.2 %,而在Stage II時因NO3–-N累積導致後期去除率下降到45.7 %、28.5 %、28.7 %、28.9 %及48.3 %。然而TP在Stage I時,其去除率皆為3成上下,可在Stage II時TP去除率皆上升至8成以上,判斷可能因系統內經過沖洗後將沉積物及吸附在濾材上污染物沖洗出系統內,而達到清除底泥維持系統處理效率。經實驗Stage I~II結果可得知不同飽和度對含氮污染物及有機污染物有相對應之影響,但因系統內產生厭氧氨氧化菌後使各含氮汙染物開始發生變化,而總磷方面則有明顯因沖洗系統後去除率有相當大的提升。
    The purpose of this study is to explore how the ratio of the different water layer heights in the filter layer to the water layer height of the control group (Traditional VSSF CW) influence on the system pollution degradation efficiency by combining system to trickling filter and vertical subsurface flow (VSSF) constructed wetland (CW) under the conditions same heights. During the experiment, this study is planned to set up five wetland systems (SSF-A, SSF-B, SSF-C, SSF-D, SSF-E), of which SSF-A is the control group system, and the depth of experimental water tank is 100 cm, and the water depths of other corresponding experimental systems are 80 cm, 60 cm, 40 cm, 20 cm, respectively. The corresponding saturations are 100 %, 80 %, 60 %, 40 %, and 20 %, respectively. There are two experimental stages, the first one is a regular experiment (Stage I), and the second one is the characteristics of system pollution degradation when the system is seriously blocked. This study mainly used different water quality parameters to evaluate the impact of different water layer saturation on the degradation efficiency of system pollution;and the parameters are biochemical oxygen demand (BOD), ammonia-nitrogen (ammonia-nitrogen;NH3-N), nitrate-nitrogen, nitrite- nitrogen, total Kjeldahl nitrogen (TKN), total nitrogen (TN), and total phosphorus (TP) were used to evaluate the differences of removal efficiencies of SSF-A~SSF-E.The effect of this study on the removal of organic matter and nitrogen-containing pollutants in Stage I meets the expected results of the experimental design. During the experiment, when BOD was on Stage I, the removal rates of SSF-A~SSF-E were 50.7 %, 30.6 %, 28.7 %, 38.2 %, and 65.8 %, which were all higher than Stage II's 50.1 %, -12.7 %, -25.1 %, 12.1 %, and 27.5 %. It can be seen that the clogging of CW systems have an inhibitory effect on BOD removal. When the SSF-A~SSF-E systems are in Stage I, the NH3-N removal rates are 40.2 %, 51.2 %, 84.7 %, 79.2 %, and 93.3 %, respectively. Therefore, the lower the saturation, the more the dripping filter passes. The higher the oxygen efficiency, the better the removal of NH3-N. However, in Stage II, the removal rate of NH3-N is abnormally increased to 93 %, 92.2 %, 99.7 %, 98.2 % and 99.6 %, and NO2–-N has no accumulation, but NO3–-N is accumulated. It is speculated that the removal mechanism of nitrogenous pollutants in the system may be changed from nitrification and denitrification to anaerobic ammonia oxidation (Anammox) or other related reactions. In addition, TKN fluctuates due to changes in the removal rate of ammonia nitrogen. As for TN, the removal rates of Stage I are 37.5 %, 35.3 %, 69.5 %, 36.0 %, and 86.2 %, while in Stage II, the accumulation of NO3–-N results in the drop of later removal rate to 45.7 %, 28.5 %, 28.7 %, 28.9 % and 48.3 %. However, when TP is in Stage I, its removal rate is around 30%, but in Stage II, the TP removal rate rises to more than 80%. It is judged that the sediment and the pollutants adsorbed on the filter material may be flushed out of the system after the system is flushed, and the bottom sludge is removed to maintain the treatment efficiency of the system. According to the results of experiment Stage-I~II, it can be known that different saturation levels have corresponding effects on nitrogen-containing pollutants and organic pollutants. However, due to the production of Anammox bacteria in the system, the nitrogen-containing pollutants begin to change, and in terms of total phosphorus, the removal rate after flushing the system has been significantly improved.
    作者: 黃至瑄
    貢獻者: 環境資源管理系
    錢紀銘
    關鍵字: 垂直潛流式人工溼地
    滴濾池
    飽和度
    總氮
    總磷
    vertical subsurface flow constructed wetland
    trickling filter
    saturation
    total nitrogen
    total phosphorous
    日期: 2020
    上傳時間: 2022-10-21 10:34:26 (UTC+8)
    關聯: 學年度:108, 94頁
    顯示於類別:[環境資源管理系(所)] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML413檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋