Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/33982
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18076/20274 (89%)
造訪人次 : 5314656      線上人數 : 1112
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/33982


    標題: 臺灣南部都市能見度長期變化及短期大氣氣膠化學組成與粒徑分布
    Long-term Trend of Urban Visibility and Short-term Chemical Composition of Size-fractional Aerosol in Southern Taiwan
    Airborne particulate matters are an important component of ambient air because of its significant effects on air quality, human health, regional visibility, and global climate change. High particulate matters are an important factor that causes low visibility. In this study, I investigated the relationships between visibility and PM2.5 concentration in the Tainan metropolitan area, southern Taiwan, from 2010 to 2018. The annual average PM2.5 concentration decreased from 37.0±19.4 μg/m3 in 2010 to 22.4±11.8 μg/m3 in 2018, while the annual average visibility increased from 8.53±4.56 km to 15.8±10.3 km in 2018. The 9-year annual average visibility was exponentially increased with the decreased annual average PM2.5 mass concentrations, expressing as Vis=587.2PM2.5-1.21 (where the unit in Vis is km and in PM2.5 is μg/m3, r value= -0.860). From 2010 to 2018, the visibility of the four seasons was the best in summer, with an average of 15.1±7.54 km, while the PM2.5 concentration in summer was the lowest, averaging only 15.5±7.88 μg/m3. The worst visibility was in the winter, with an average of only 6.62±6.18 km, while winter PM2.5 was the highest concentration, with an average of 40.5±16.9 μg/m3. Season visibility was also negatively correlated with PM2.5 concentration, expressing as Vis=157.9PM2.5-0.860 (r value= -0.866). The increasing trend in visibility is significantly related to the decreased concentration in PM2.5. The size distributions and concentrations of inorganic species during the Moon Festival such as nss-SO42- (2.9889±0.0300 μg/m3), NH4+ (0.9275±0.1131 μg/m3), K+ (0.5624±0.6594 μg/m3), Ca2+ (0.2971±0.3588 μg/m3), and Mg2+ (0.1856±0.2428 μg/m3), respectively;and were similarly peak concentrations of these species occurred at 0.56 μm in the droplet mode during Moon Festival, as a result, the chemical compositions that mention above were the main aerosol compositions that affects visibility.
    作者: Wongrat, Chayanis
    貢獻者: 環境工程與科學系
    蔡瀛逸
    關鍵字: 長程傳輸
    PM2.5
    能見度減少
    化學成分
    Long-term trend
    PM2.5
    Visibility impairment
    Chemical compositions
    日期: 2020
    上傳時間: 2022-10-21 10:33:28 (UTC+8)
    關聯: 電子全文公開日期:2023-12-31
    學年度:108, 95頁
    顯示於類別:[環境工程與科學系(所)] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML485檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋