Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/33561
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18074/20272 (89%)
Visitors : 4080273      Online Users : 1249
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/33561


    Title: 以兩階段採用觀點瞭解醫師對於AI輔助診斷之採用和績效表現: 建構與實證個人採用的整合性模式
    Understanding Physicians’ Adoption and Achievement Performance of Ai-Assisted Diagnosis from a Two-Stage Adoption Perspective: Development and Validation of Individual Adoption Integrated Models
    Authors: 謝碧容
    Contributors: 嘉藥學校財團法人嘉南藥理大學醫務管理系(含碩士班)
    Keywords: 人工智慧輔助診斷
    消費者價值
    涉入
    科技準備度
    成就期望
    任務價值
    社會資本
    Artificial intelligence-assisted diagnosis
    Consumer value
    Involvement
    Technology readiness
    Expectancy for success
    Task value
    Social capital
    Date: 2020
    Issue Date: 2022-01-13 16:21:33 (UTC+8)
    Abstract: 人工智慧(Artificial intelligence, AI)於醫療影像應用透過機器學習工具、大數據及類神經網路在醫學影像分析中提高醫學診斷的效率和效果。儘管醫界強調AI輔助診斷為醫院提供精準醫療的機會,但整體採用率仍然很低。回顧過去相關文獻主要探討AI醫療應用對醫療過程的影響、臨床診斷與治療建議,而無法充分解釋醫師對AI輔助診斷的使用行為。基於個人採用之觀點,本研究開發兩階段採用研究模型解釋醫師對AI輔助診斷的先前行為(前採用階段)和持續使用(後採用階段)。本研究首先探討消費者價值、個人涉入和科技準備度對醫師採用AI輔助診斷行為意圖的影響;其次為探討成功期望、任務價值和社會資本對持續使用意圖及其績效之影響。本研究採實證研究方法,以衛生福利部所公告醫院評鑑及教學醫院評鑑合格名單為樣本?源,第一年以醫師為研究對象進行問卷調查,第二年以有AI輔助診斷使用經驗的醫師進行問卷調查;再以結構方程模式進?資?分析?驗證研究模式變?間之因果關係,藉以評估與驗證此整合模式及影響因素之關係。因此,本研究成果不僅提供醫院管理者選擇適合的導入策略,並可提供醫學影像製造商、軟件開發商和政府機構對AI輔助診斷行銷和管理策略之?考,並增?學術界對於AI科技使用行為衡?之相關研究。
    Artificial intelligence (AI) medical applications enable increased efficiency in and effectiveness of medical diagnostics via machine learning tools, big data, and neural networks in medical image analysis. Although some medical practitioners encourage the use of AI-assisted diagnostic tools due to the precise diagnostic opportunities that they offer hospitals, their overall adoption rate remains low. Several prior studies have only focused on AI medical applications that impact the health care process, provide clinical diagnoses, and suggest treatment; therefore, they are insufficient for fully explaining physician AI-assisted diagnosis usage behaviors. Based on the perspective of individual adoption, this study has developed two-stage adoption research models to explain a physician’s prior behavior (pre-adoption stage) and AI-assisted diagnosis continued use (post-adoption stage), respectively. Thus, this study first aimed to explore the consumer value, personal involvement, and technology readiness factors that influence physicians’ intentions to adopt AI-assisted diagnostic tools. Next, this study aimed to explain the expectancy for success, task values, and social capital factors that influence the antecedents of continuous usage intention of AI-assisted diagnosis and performance impact. A sample source was achieved by using the roster of the Taiwan Ministry of Health and Welfare. A series of surveys will be conducted to empirically test the pre- adoption research model with practicing physicians in the first year. Next, a series of surveys will be conducted to empirically test the post-adoption stage research model with physicians with experience using AI-assisted diagnostic tools in the second year. Structural equation modeling was employed to test two research models. The results of this study provide useful insights that will not only help hospital managers choose an appropriate AI-assisted diagnosis implementation strategy but also enable medical imaging manufacturers, software developers, and government agencies to develop and appropriate their own marketing and administrative strategies for the future. Furthermore, this study provides grounds for a model of innovative AI technology adoption, which can serve as the starting point for future research in this relatively unexplored yet potentially fertile area of research.
    Relation: 計畫編號:MOST109-2410-H041-002
    計畫年度:109
    執行起迄:2020-08~2021-07
    Appears in Collections:[Dept. of Hospital and Health (including master's program)] MOST Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML739View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback