Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/32588
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18074/20272 (89%)
造訪人次 : 4391101      線上人數 : 1197
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/32588


    標題: A New Triterpenoid Glucoside from a Novel Acidic Glycosylation of Ganoderic Acid A via Recombinant Glycosyltransferase of Bacillus subtilis
    作者: Chang, Te-Sheng
    Chien-Min Chiang(江建民)
    Kao, Yu-Han
    Wu, Jiumn-Yih
    Wu, Yu-Wei
    Wang, Tzi-Yuan
    貢獻者: Natl Univ Tainan, Dept Biol Sci & Technol
    Chia Nan Univ Pharm & Sci, Dept Biotechnol
    Natl Quemoy Univ, Dept Food Sci, Jinning 892, Kinmen County, Taiwan
    Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Biomed Informat
    Taipei Med Univ Hosp, Clin Big Data Res Ctr
    Acad Sinica, Biodivers Res Ctr
    關鍵字: ganoderic acid A
    glucosyltransferase
    acidic
    Bacillus subtilis
    triterpenoid
    日期: 2019-10
    上傳時間: 2020-07-29 13:51:03 (UTC+8)
    出版者: MDPI
    摘要: Ganoderic acid A (GAA) is a bioactive triterpenoid isolated from the medicinal fungus Ganoderma lucidum. Our previous study showed that the Bacillus subtilis ATCC (American type culture collection) 6633 strain could biotransform GAA into compound (1), GAA-15-O-beta -glucoside, and compound (2). Even though we identified two glycosyltransferases (GT) to catalyze the synthesis of GAA-15-O-beta -glucoside, the chemical structure of compound (2) and its corresponding enzyme remain elusive. In the present study, we identified BsGT110, a GT from the same B. subtilis strain, for the biotransformation of GAA into compound (2) through acidic glycosylation. BsGT110 showed an optimal glycosylation activity toward GAA at pH 6 but lost most of its activity at pH 8. Through a scaled-up production, compound (2) was successfully isolated using preparative high-performance liquid chromatography and identified to be a new triterpenoid glucoside (GAA-26-O-beta -glucoside) by mass and nuclear magnetic resonance spectroscopy. The results of kinetic experiments showed that the turnover number (k(cat)) of BsGT110 toward GAA at pH 6 (k(cat) = 11.2 min(-1)) was 3-fold higher than that at pH 7 (k(cat) = 3.8 min(-1)), indicating that the glycosylation activity of BsGT110 toward GAA was more active at acidic pH 6. In short, we determined that BsGT110 is a unique GT that plays a role in the glycosylation of triterpenoid at the C-26 position under acidic conditions, but loses most of this activity under alkaline ones, suggesting that acidic solutions may enhance the catalytic activity of this and similar types of GTs toward triterpenoids.
    關聯: Molecules, v.24, n.19, 3457
    顯示於類別:[生物科技系(所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    10.3390-molecules24193457.pdf2349KbAdobe PDF297檢視/開啟
    index.html0KbHTML1386檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋