資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://ir.cnu.edu.tw/handle/310902800/32588
|
標題: | A New Triterpenoid Glucoside from a Novel Acidic Glycosylation of Ganoderic Acid A via Recombinant Glycosyltransferase of Bacillus subtilis |
作者: | Chang, Te-Sheng Chien-Min Chiang(江建民) Kao, Yu-Han Wu, Jiumn-Yih Wu, Yu-Wei Wang, Tzi-Yuan |
貢獻者: | Natl Univ Tainan, Dept Biol Sci & Technol Chia Nan Univ Pharm & Sci, Dept Biotechnol Natl Quemoy Univ, Dept Food Sci, Jinning 892, Kinmen County, Taiwan Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Biomed Informat Taipei Med Univ Hosp, Clin Big Data Res Ctr Acad Sinica, Biodivers Res Ctr |
關鍵字: | ganoderic acid A glucosyltransferase acidic Bacillus subtilis triterpenoid |
日期: | 2019-10 |
上傳時間: | 2020-07-29 13:51:03 (UTC+8) |
出版者: | MDPI |
摘要: | Ganoderic acid A (GAA) is a bioactive triterpenoid isolated from the medicinal fungus Ganoderma lucidum. Our previous study showed that the Bacillus subtilis ATCC (American type culture collection) 6633 strain could biotransform GAA into compound (1), GAA-15-O-beta -glucoside, and compound (2). Even though we identified two glycosyltransferases (GT) to catalyze the synthesis of GAA-15-O-beta -glucoside, the chemical structure of compound (2) and its corresponding enzyme remain elusive. In the present study, we identified BsGT110, a GT from the same B. subtilis strain, for the biotransformation of GAA into compound (2) through acidic glycosylation. BsGT110 showed an optimal glycosylation activity toward GAA at pH 6 but lost most of its activity at pH 8. Through a scaled-up production, compound (2) was successfully isolated using preparative high-performance liquid chromatography and identified to be a new triterpenoid glucoside (GAA-26-O-beta -glucoside) by mass and nuclear magnetic resonance spectroscopy. The results of kinetic experiments showed that the turnover number (k(cat)) of BsGT110 toward GAA at pH 6 (k(cat) = 11.2 min(-1)) was 3-fold higher than that at pH 7 (k(cat) = 3.8 min(-1)), indicating that the glycosylation activity of BsGT110 toward GAA was more active at acidic pH 6. In short, we determined that BsGT110 is a unique GT that plays a role in the glycosylation of triterpenoid at the C-26 position under acidic conditions, but loses most of this activity under alkaline ones, suggesting that acidic solutions may enhance the catalytic activity of this and similar types of GTs toward triterpenoids. |
關聯: | Molecules, v.24, n.19, 3457 |
顯示於類別: | [生物科技系(所)] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
10.3390-molecules24193457.pdf | | 2349Kb | Adobe PDF | 297 | 檢視/開啟 | index.html | | 0Kb | HTML | 1378 | 檢視/開啟 |
|
在CNU IR中所有的資料項目都受到原著作權保護.
|