Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/32257
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18076/20274 (89%)
造访人次 : 4614391      在线人数 : 1239
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/32257


    標題: Comparison of machine learning models for the prediction of mortality of patients unplanned extubation in intensive with care units
    作者: Hsieh, Meng Hsuen
    Hsieh, Meng Ju
    Chen, Chin-Ming
    Hsieh, Chia-Chang
    Chao, Chien-Ming
    Lai, Chih-Cheng
    貢獻者: Univ Calif Berkeley, Dept Elect Engn & Comp Sci
    Poznan Univ Med Sci, Dept Med
    Chia Nan Univ Pharm & Sci, Dept Recreat & Hlth Care Management
    Chi Mei Med Ctr, Dept Intens Care Med
    China Med Univ, Childrens Hosp, Dept Pediat
    關鍵字: Artificial Neural-Networks
    Apache-Ii
    Endotracheal Extubation
    Prospective Multicenter
    Self-Extubations
    Scoring System
    Classification
    Icu
    Validation
    Outcomes
    日期: 2018-11-20
    上傳時間: 2019-11-15 15:47:06 (UTC+8)
    出版者: NATURE PUBLISHING GROUP
    摘要: Unplanned extubation (UE) can be associated with fatal outcome; however, an accurate model for predicting the mortality of UE patients in intensive care units (ICU) is lacking. Therefore, we aim to compare the performances of various machine learning models and conventional parameters to predict the mortality of UE patients in the ICU. A total of 341 patients with UE in ICUs of Chi-Mei Medical Center between December 2008 and July 2017 were enrolled and their demographic features, clinical manifestations, and outcomes were collected for analysis. Four machine learning models including artificial neural networks, logistic regression models, random forest models, and support vector machines were constructed and their predictive performances were compared with each other and conventional parameters. Of the 341 UE patients included in the study, the ICU mortality rate is 17.6%. The random forest model is determined to be the most suitable model for this dataset with F-1 0.860, precision 0.882, and recall 0.850 in the test set, and an area under receiver operating characteristic (ROC) curve of 0.910 (SE: 0.022, 95% CI: 0.867-0.954). The area under ROC curves of the random forest model was significantly greater than that of Acute Physiology and Chronic Health Evaluation (APACHE) II (0.779, 95% CI: 0.716-0.841), Therapeutic Intervention Scoring System (TISS) (0.645, 95% CI: 0.564-0.726), and Glasgow Coma scales (0.577, 95%: CI 0.497-0.657). The results revealed that the random forest model was the best model to predict the mortality of UE patients in ICUs.
    link: http://dx.doi.org/10.1038/s41598-018-35582-2
    關聯: Nature Communications, v.8, 17116
    显示于类别:[休閒保健管理系(所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    10.1038-s41598-018-35582-2.pdf1105KbAdobe PDF450检视/开启
    index.html0KbHTML1900检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈