Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/32247
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18074/20272 (89%)
造訪人次 : 4369880      線上人數 : 1311
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/32247


    標題: An Artificial Neural Network Model for Predicting Successful Extubation in Intensive Care Units
    作者: Hsieh, Meng-Hsuen
    Hsieh, Meng-Ju
    Chen, Chin-Ming
    Hsieh, Chia-Chang
    Chao, Chien-Ming
    Lai, Chih-Cheng
    貢獻者: Univ Calif Berkeley, Dept Elect Engn & Comp Sci
    Poznan Univ Med Sci, Dept Med
    Chia Nan Univ Pharm & Sci, Dept Recreat & Hlth Care Management
    Chi Mei Med Ctr, Dept Intens Care Med
    China Med Univ, Childrens Hosp, Dept Pediat
    Chi Mei Med Ctr, Dept Intens Care Med
    關鍵字: predictor
    successful extubation
    artificial neural network
    日期: 2018-09
    上傳時間: 2019-11-15 15:46:42 (UTC+8)
    出版者: MDPI
    摘要: Background: Successful weaning from mechanical ventilation is important for patients in intensive care units (ICUs). The aim was to construct neural networks to predict successful extubation in ventilated patients in ICUs. Methods: Data from 1 December 2009 through 31 December 2011 of 3602 patients with planned extubation in Chi-Mei Medical Center's ICUs was used to train and test an artificial neural network (ANN). The input was 37 clinical risk factors, and the output was a failed extubation prediction. Results: One hundred eighty-five patients (5.1%) had a failed extubation. Multivariate analyses revealed that failure was positively associated with therapeutic intervention scoring system (TISS) scores (odds ratio [OR]: 1.814; 95% Confidence Interval [CI]: 1.283-2.563), chronic hemodialysis (OR: 12.264; 95% CI: 8.556-17.580), rapid shallow breathing (RSI) (OR: 2.003; 95% CI: 1.378-2.910), and pre-extubation heart rate (OR: 1.705; 95% CI: 1.173-2.480), but negatively associated with pre-extubation PaO2/FiO(2) (OR: 0.529; 95%: 0.370-0.750) and maximum expiratory pressure (MEP) (OR: 0.610; 95% CI: 0.413-0.899). A multilayer perceptron ANN model with 19 neurons in a hidden layer was developed. The overall performance of this model was F-1: 0.867, precision: 0.939, and recall: 0.822. The area under the receiver operating characteristic curve (AUC) was 0.85, which is better than any one of the following predictors: TISS: 0.58 (95% CI: 0.54-0.62; p < 0.001); 0.58 (95% CI: 0.53-0.62; p < 0.001); and RSI: 0.54 (95% CI: 0.49-0.58; p = 0.097). Conclusions: The ANN performed well when predicting failed extubation, and it will help predict successful planned extubation.
    link: http://dx.doi.org/10.3390/jcm7090240
    關聯: Catalysts, v.7, n.9, 240
    顯示於類別:[醫務管理系(所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    10.3390-jcm7090240.pdf993KbAdobe PDF289檢視/開啟
    index.html0KbHTML1336檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋