Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/32187
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18055/20253 (89%)
Visitors : 25105929      Online Users : 398
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/32187


    Title: Kinetics of sulfur removal in high shear mixing-assisted oxidative-adsorptive desulfurization of diesel
    Authors: de Luna, Mark Daniel G.
    Samaniego, Marvin L.
    Ong, Dennis C.
    Wan, Meng-Wei
    Lu, Ming-Chun
    Contributors: Univ Philippines, Dept Chem Engn
    Univ Philippines, Natl Grad Sch Engn, Environm Engn Program
    Univ Philippines, Sch Technol
    Chia Nan Univ Pharm & Sci, Dept Environm Resources Management
    Keywords: Activated carbon
    Adsorption
    Alumina
    Desulfurization
    Diesel
    Kinetics
    Date: 2018-03-20
    Issue Date: 2019-11-15 15:44:18 (UTC+8)
    Publisher: ELSEVIER SCI LTD
    Abstract: Current global environmental regulations require deep desulfurization of prevailing high-sulfur crude oil reserves to limit toxic sulfur oxide emissions during fuel combustion. In this study, deep desulfurization of diesel was carried out in two sequential batch steps: (1) oxidation of refractory sulfur compounds in diesel into sulfones and (2) adsorption of the polar sulfur-species in the resulting organic phase onto commercially available adsorbents. Oxidative desulfurization of diesel was performed in a glass vessel equipped with a high shear mixer set at 12,000 rpm. Phosphotungstic acid, tetraoctylammonium bromide and hydrogen peroxide were used as catalyst, phase transfer agent and oxidant, respectively. Adsorptive desulfurization, on the other hand, was carried out using powdered alumina, granular alumina, powdered activated carbon (PAC), and granular activated carbon (GAC) adsorbents. Characterization results showed that powdered alumina and PAC appear to be aggregates of small crystalline structures, with PAC having larger surface area of 846 m(2) g(-1) compared to powdered alumina at 129 m(2) g(-1). Micropores were detected in PAC, while the porosity of powdered alumina was attributed to the presence of mesopores. Sulfur removal by the four types of adsorbents conformed to the pseudo second order model, implying that chemisorption was the rate-limiting step. The computed adsorption capacities from the kinetic model at 3.47, 1.09, 3 and 1.09 mg g(-1) were in agreement with the experimental adsorption capacities at equilibrium of 3.36, 0.98, 3 and 1 mg g(-1) for powdered alumina, granular alumina, PAC and GAC, respectively. The 2-line Weber-Morris plots of the four adsorbents indicated the effects of boundary layer diffusion and intraparticle diffusion in sulfur removal. The values of k(id1) and k(id2), as well as l(1) and l(2), implied that boundary layer diffusion proceeded at a faster rate than the rate-determining step which was intraparticle diffusion. Higher intraparticle diffusion coefficient values were observed for powdered alumina due to its larger particle size and, consequently, smaller surface area where the sulfur compounds tend to be more readily adsorbed. (C) 2018 Elsevier Ltd. All rights reserved.
    ???metadata.dc.relation.uri???: http://dx.doi.org/10.1016/j.jclepro.2018.01.049
    Relation: Journal of Cleaner Production, v.178, pp.468-475
    Appears in Collections:[Dept. of Environmental Resources Management] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    10.1016-j.jclepro.2018.01.049.pdf1306KbAdobe PDF491View/Open
    index.html0KbHTML1557View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback