Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/31815
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18258/20456 (89%)
Visitors : 6221903      Online Users : 1057
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/31815


    Title: 應用物聯網進行溫泉水量監測
    Monitoring on the Spring Water Volume Using Internet of Thing
    Authors: 楊智傑
    Contributors: 應用空間資訊系
    周玉端
    Keywords: 物聯網
    溫泉
    即時監測
    IoT
    Spring Water
    Real-Time Monitoring
    ESP8266
    Date: 2018
    Issue Date: 2019-02-27 16:44:52 (UTC+8)
    Abstract: 科技日新月異,「網際網路」已成為人們生活中不可或缺的重要角色,物聯網能夠連接許多不同的應用端,讓感測器透過網際網路提供即時的訊息。在溫泉水量計量當中,由於傳統水錶在溫泉水高溫高壓的環境中相當容易損壞,使得溫泉業者與業管單位無法獲得準確的使用水量,同時,物聯網至今在溫泉檢測當中仍尚未發展成熟。
    為此,本研究建置了一套溫泉監測系統來監測其水位與溫度。其中,採用了工業型的液位感測器以及溫度感測器來承受溫泉環境的高溫以及複雜水質,再連接其他電子元件來進行一連串的訊號轉換,以達到介面訊號整合的需求,最後讓感測器訊號由ESP8266上傳至雲端伺服器,透過雲端資料庫的資料收集與分析,達成監測溫泉水量與溫度變化之目標。
    為了確保以上的這些感測器以及元件能夠穩定運作,先針對元件進行校準和耐熱的實驗,透過實驗數據擬合方式讓溫度誤差值小於 ±3 ℃以及水位誤差小於 ±3 cm。接著則是將本系統實際應用於溫泉泉水中,進行特定業者溫泉的水位與水溫的即時監測。以每分鐘由系統所測得的數據,並與溫泉業者比對實際的用水情形後,驗證了本系統的可行性。經由整個新研發的裝置,透過物聯網進行遠端監控獲得完整的物理量變化情形。在非常低的設備建置費用下,不僅更方便地讓溫泉業者能夠即時瞭解溫泉狀況,而且節省了每個月測量溫泉的人力資源,同時改善水費計費問題。
    With technology changing rapidly, the Internet has become an indispensable and important part of people's lives. The Internet of Things can connect many different applications so that sensors can provide instant messages over the Internet. Among the hot spring water metering, traditional water meters are quite easily damaged in the environment of high temperature and high pressure of hot spring water, making it impossible for hot water providers and industrial regulators to obtain accurate water usage. At the same time, the Internet of Things (IoT) has not yet matured in hot spring testing.
    To this purpose, the study set up a set of hot spring monitoring system to monitor its water level and temperature. Among them, the use of industrial level sensors and temperature sensors to withstand hot springs and hot water environment and complex water quality, and then connect to other electronic components for a series of signal conversion in order to meet the interface signal integration needs. Finally, the sensor signal from ESP8266 uploaded to the cloud server, cloud data through the database to collect and analyze, to achieve the goal of monitoring the hot spring water and temperature changes.
    To ensure stable operation of these sensors and their components, a calibration and heat-resistant experiment was first conducted on the components to minimize the temperature error by ? 3 ? C and the water level error by ? 3 cm through experimental data fitting. Then, the system is actually applied to hot spring water, hot springs for specific industries, real-time monitoring of water level and temperature. The data measured by the system per minute, compared with the hot springs industry, the actual use of water, verify the feasibility of the system. Through the newly developed device, the complete physical changes are obtained by remote monitoring through the Internet of Things. With very low equipment installation costs, it is not only more convenient for spa practitioners to get an instant access to hot springs, but also to save on monthly spa resources and to improve water billing.
    Relation: 電子全文公開日期:2020-02-12,學年度:106, 87頁
    Appears in Collections:[Dept. of Applied Geoinformatics] Dissertations and Theses

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1442View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback