Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/31588
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17775/20116 (88%)
造访人次 : 10208046      在线人数 : 459
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    標題: PSMB5 plays a dual role in cancer development and immunosuppression
    作者: Wang, Chih-Yang
    Li, Chung-Yen
    Hsu, Hui-Ping
    Cho, Chien-Yu
    Yen, Meng-Chi
    Weng, Tzu-Yang
    Chen, Wei-Ching
    Hung, Yu-Hsuan
    Lee, Kuo-Ting
    Hung, Jui-Hsiang
    Chen, Yi-Ling
    Lai, Ming-Derg
    貢獻者: Natl Cheng Kung Univ, Dept Biochem & Mol Biol
    Natl Cheng Kung Univ, Inst Basic Med Sci
    Natl Cheng Kung Univ, Dept Surg, Coll Med
    Kaohsiung Med Univ Hosp,Kaohsiung Med Univ, Dept Emergency Med
    Chia Nan Univ Pharm & Sci, Dept Biotechnol
    Chia Nan Univ Pharm & Sci, Dept Senior Citizen Serv Management
    關鍵字: Breast cancer
    日期: 2017
    上傳時間: 2018-11-30 15:49:20 (UTC+8)
    出版者: E-Century Publishing Corp
    摘要: Tumor progression and metastasis are dependent on the intrinsic properties of tumor cells and the influence of microenvironment including the immune system. It would be important to identify target drug that can inhibit cancer cell and activate immune cells. Proteasome beta subunits (PSMB) family, one component of the ubiquitin-proteasome system, has been demonstrated to play an important role in tumor cells and immune cells. Therefore, we used a bioinformatics approach to examine the potential role of PSMB family. Analysis of breast TCGA and METABRIC database revealed that high expression of PSMB5 was observed in breast cancer tissue and that high expression of PSMB5 predicted worse survival. In addition, high expression of PSMB5 was observed in M2 macrophages. Based on our bioinformatics analysis, we hypothesized that PSMB5 contained immunosuppressive and oncogenic characteristics. To study the effects of PSMB5 on the cancer cell and macrophage in vitro, we silenced PSMB5 expression with shRNA in THP-1 monocytes and MDA-MB-231 cells respectively. Knockdown of PSMB5 promoted human THP-1 monocyte differentiation into M1 macrophage. On the other hand, knockdown PSMB5 gene expression inhibited MDA-MB-231 cell growth and migration by colony formation assay and boyden chamber. Collectively, our data demonstrated that delivery of PSMB5 shRNA suppressed cell growth and activated defensive M1 macrophages in vitro. Furthermore, lentiviral delivery of PSMB5 shRNA significantly decreased tumor growth in a subcutaneous mouse model. In conclusion, our bioinformatics study and functional experiments revealed that PSMB5 served as novel cancer therapeutic targets. These results also demonstrated a novel translational approach to improve cancer immunotherapy.
    關聯: American Journal of Cancer Research, v.7, n.11, pp.2103-2120
    显示于类别:[老人服務事業管理系] 期刊論文
    [生物科技系(所)] 期刊論文


    档案 描述 大小格式浏览次数
    ajcr0007-2103.pdf3291KbAdobe PDF0检视/开启

    在CNU IR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈