Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/31037
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18074/20272 (89%)
Visitors : 4076293      Online Users : 1336
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/31037


    Title: Cardiac fibrosis in mouse expressing DsRed tetramers involves chronic autophagy and proteasome degradation insufficiency
    Authors: Chen, Tsung-Hsien
    Chen, Mei-Ru
    Chen, Tzu-Yin
    Wu, Tzu-Chin
    Liu, Shan-Wen
    Hsu, Ching-Han
    Liou, Gan-Guang
    Kao, Yu-Ying
    Dong, Guo-Chung
    Chu, Pao-Hsien
    Liao, Jiunn-Wang
    Lin, Kurt Ming-Chao
    Contributors: Natl Hlth Res Inst, Inst Biomed Engn & Nanomed
    Natl Tsing Hua Univ, Inst Biomed Engn & Environm Sci
    Natl Hlth Res Inst, Inst Mol & Genom Med
    Chia Nan Univ Pharm & Sci, Dept Biotechnol
    Chang Gung Univ, Coll Med, Chang Gung Mem Hosp, Dept Cardiol
    Natl Chung Hsing Univ, Grad Inst Vet Pathobiol
    Keywords: protein aggregation
    cardiac hypertrophy
    fibrosis
    heart failure
    proteasome
    Pathology Section
    system
    Date: 2016-08
    Issue Date: 2018-01-18 11:40:20 (UTC+8)
    Publisher: Impact Journals Llc
    Abstract: Proteinopathy in the heart which often manifests excessive misfolded/aggregated proteins in cardiac myocytes can result in severe fibrosis and heart failure. Here we developed a mouse model, which transgenically express tetrameric DsRed, a red fluorescent protein (RFP), in an attempt to mimic the pathological mechanisms of cardiac fibrosis. Whilst DsRed is expressed and forms aggregation in most mouse organs, certain pathological defects are specifically recapitulated in cardiac muscle cells including mitochondria damages, aggresome-like residual bodies, excessive ubiquitinated proteins, and the induction of autophagy. The proteinopathy and cellular injuries caused by DsRed aggregates may be due to impaired or overburdened ubiquitin-proteasome system and autophagy-lysosome systems. We further identified that DsRed can be ubiquitinated and associated with MuRF1, a muscle-specific E3 ligase. Concomitantly, an activation of NF-kappa B signaling and a strong TIMP1 induction were noted, suggesting that RFP-induced fibrosis was augmented by a skewed balance between TIMP1 and MMPs. Taken together, our study highlights the molecular consequences of uncontrolled protein aggregation leading to congestive heart failure, and provides novel insights into fibrosis formation that can be exploited for improved therapy.
    Relation: Oncotarget, v.7 n.34, pp.54274-54289
    Appears in Collections:[Dept. of Biotechnology (including master's program)] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    31037.pdf9478KbAdobe PDF359View/Open
    index.html0KbHTML1341View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback