Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/30978
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18074/20272 (89%)
造访人次 : 4077805      在线人数 : 1162
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/30978


    標題: Numerical and experimental study of virtual impactor design and aerosol separation
    作者: Chen, Hung-Ying
    Huang, Hsiao-Lin
    貢獻者: Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science
    關鍵字: Computational fluid dynamics
    Impactor
    Sheath flow
    Particles
    Air sampling
    日期: 2016-04
    上傳時間: 2018-01-18 11:39:06 (UTC+8)
    出版者: Elsevier Sci Ltd
    摘要: PM10 and PM2.5 are the most harmful particles affecting the human respiratory system in the environment or at the workplace. In this study, an innovative active virtual impactor (AVI) was developed to separate particles. The operation parameters of different flow rates regarding sample flow velocity, side flow velocity, and sheath flow velocity were established based on computational fluid dynamics (CFD) simulation results. Simulation results were also examined experimentally for validation purposes. The optimal numbers of structured grids for numerical simulations were between 10,000 and 150,000. The flow ratios of sheath velocity versus sample flow velocity were in the range from 0 to 20. The simulated particle size and side flow velocities ranged from 1.5 to 20 um and 0 to 3 m/s, respectively. In the experiment, single-sized (1.5 mu m) particles were generated and measured using a fluidized bed aerosol generator and an aerosol spectrometer, respectively. The ratio of the sheath flow velocity to the sample flow velocity can only range from 0 to 4. Simulation results showed that particles were increasingly separated when the side flow velocity increased. When the ratio of the sheath flow velocity to the sample flow velocity increased, the required side flow velocity to separate the specific particle size also increased. The experimental results agreed with simulation results. The sheath flow design could maintain the particle flow in the middle of the flow channel, and without loss on the walls of virtual impactor. The CFD simulation tool can be successfully applied to predict the particle separation efficiency of the impactor and related operational parameters. The designed AVI can thus improve the traditional virtual impactors with respect to the ease of flow control and separation efficiency. (C) 2015 Elsevier Ltd. All rights reserved.
    關聯: Journal of Aerosol Science, v.94, pp.43-55
    显示于类别:[職業安全衛生系(含防災所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1482检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈