Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/30817
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18074/20272 (89%)
Visitors : 4152825      Online Users : 6063
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/30817


    Title: 溫泉監測數據之自動判識-以礁溪溫泉為例
    Automatic analysis and monitoring of hot spring water resource in Jiashi
    Authors: 高祈福
    Contributors: 觀光事業管理系
    陳文福
    Keywords: 水位
    水溫
    礁溪
    自動化
    water level and temperature
    Jiasi
    Date: 2017
    Issue Date: 2018-01-11 11:43:44 (UTC+8)
    Abstract: 中文摘要 溫泉為臺灣的珍貴天然資源,為確保各地區溫泉資源的永續發展,水位及水溫之長期監測實屬必要。臺灣主要溫泉地區共有25處,目前已有超過9區設立長期監測站,監測數據數量龐大且不斷的累積增加中,針對溫泉資源管理的需求,設計電腦自動化程式處理,將數據轉化為基本統計、短期指標及長期指標以協助溫泉資源管理,乃為必要之事。本研究之目的,以礁溪溫泉為例,探討如何藉由統計方法及選定指標,經由電腦程式自動處理,以幫助溫泉資源管理。本研究提出四種統計指標,以反應監測結果,提供水權管理之參考。短期指標:(1)當季之季水位(或水溫、水質)與上一季比較;(2)當季之季水位(或水溫、水質)與前一年同一季比較。長期指標:(1)當季之季水位(或水溫、水質)與歷年之平均值、極大值及極小值之比較;(2)當季之季水位(或水溫、水質)與歷年季水位進行趨勢統計,本研究採用曼肯德法(Mann-kendall)。短期指標之優點為反應近期的狀況,缺點為受到季節降雨及豐水年或枯水年之影響,並非完全反應人為抽水行為。長期指標的優點為能反應人為抽水行為,排除季節降雨及豐水年或枯水年之影響,但需要較長期的觀測數據。 礁溪地區溫泉日水位及日水溫易受降雨量影響,降雨量增加則日水位與水溫也隨之上升。歷年季水位趨勢分析:呈現上升趨勢的有7口:1、2、3、5、6、8及9號井;呈現可能下降趨勢的有1口:10號井;其餘5口無相關趨勢。礁溪溫泉截至105年12月止,水位並沒有呈現明顯的下降趨勢,水溫在核心區有變熱的趨勢,但在外圍區有變冷的趨勢。
    Hot spring is one of the most important natural resource in Taiwan. It is necessary to monitor water level and temperature of hot springs to ensure that there will be enough hot water for sustainable usage. There are 9 hot spring areas among a total of 25 hot spring areas in Taiwan had setup a system of long-term monitoring wells. Those systems provide a large amount of monitoring data and the database is steadily growing. How to process the monitoring data automatically and uncover the trend for water resource management is a real challenge. In this study I create computer programs to analyze those big data to basic statistics, short-term index, long-term index and demonstrate the procedure via data from the Jiasi hot spring. I suggest 4 types of index for water resource management. The short term index include: (1) This quarter's Quarter Water Level (QWL) comparing with the last year same quarter's QWL. (2) This quarter's QWL comparing with the last QWL. The long term index include: (3) This quarter's QWL comparing with the average, the highest, the lowest QWL of recorded data. (4) The Mann-Kendal trend of the QWL of recorded data. The short term indexes indicate the latest water level which mostly influenced by season raining but not by pumping of water and the long term indexes reflect the long term trend of water level mostly induced by withdraw of thermal water.
    Relation: 電子全文公開日期:2017-06-19,學年度:105,102頁
    Appears in Collections:[Dept. of Tourism Management] Dissertations and Theses

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1203View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback