摘要: | 研究目的: (1)例行性的世代研究追蹤 (2)權衡糖尿病各危險因子的重要性,建議成人合適之健檢間隔 (3)探討B、C 型肝炎、發炎因子與糖尿病的關係 (4)探討單獨血糖偏高的相關因子 (5)探討幽門螺旋桿菌感染與未來發生代謝症候群之關係 材料與方法: 研究對象--本研究是以2005-2010間在台大雲林分院建立之糖尿病自然史研究世代的2000名個案當作 對象,進行定期例行性追蹤,當時納入研究的條件是過去不曾被診斷出糖尿病的30歲以上成人,以縱 斷式世代研究設計進行持續追蹤研究。本計畫為期三年,第一、二年追蹤樣本,進行問卷訪視,並進 行身高、體重、血壓、心跳、腰臀圍等基本生理檢測和血液和尿液的生化檢測,包含2 小時葡萄糖耐 性測試、總膽固醇、高密度膽固醇、低密度膽固醇、三酸甘油脂、胰島素、糖化血色素、尿酸、肌酐 酸、微量白蛋白等;第三年繼續追蹤樣本並分析追蹤到樣本當年所留存的血液檢體中之幽門螺旋桿菌 的IgG抗體、pepsinogen 1、pepsinogen 2,以評估幽門螺旋桿菌感染與未來發生代謝症候群的危險性。 統計分析方法-描述性的資料與生理特徵,以平均值與標準差表示,各組間的差異以變異數分析 (ANOVA)、共變數分析(ANCOVA)、t-test與卡方檢定方法,檢定不同組間的差異。進行分組比較時, 主要有以下幾種分組方式:(1).NFG(Normal Fasting Glucose)、IFG(Impaired Fasting Glucose)、 IGT(Impaired Glucose Tolerance)、IFG+IGT四組,(2)糖尿病與非糖尿病兩組,(3) B、C 型肝炎帶原與 非帶原兩組,(4)幽門螺旋桿菌感染、非感染兩組。以單變項與多變項邏輯式迴歸分析(univariate and multivariate logistic regression)方法,估計各因子的勝算比。世代研究探討則以採用Cox’s proportion hazard model分析各因子與糖尿病或代謝症候群的關係。 本研究將以SPSS 16.0版套裝軟體進行分析,統計差異顯著水準(p value)為5%。 (1) to trace the individuals of the cohort routinely (2) to explore the appropriate interval between tests for adults (3) to examine the relationship between hepatitis B/C infection and diabetes mellitus (DM) (4) to explore the association between helicobacter pylori infection and metabolic syndrome (5) to explore the risk factors for individuals with isolated post-load hyperglycemia RESEARCH DESIGN AND METHODS – A cohort, consisted of 2000 subjects aged 30 years and above, was established during 2005-2010 in the National Taiwan University Hospital Yun-Lin Branch. At baseline, those individuals in the non-diabetic state were considered eligible for further follow up. In this ongoing study for three years, we will conduct blood examination for estimation of biochemical, metabolic and anthropometric characteristics, including weight, height, waist circumference, hip circumference, OGTT, TG, high and low density cholesterol, blood pressure, insulin resistance, urine acid , GOT, GPT, GGT, creatinine, albumin, IgG of helicobacter pylori, pepsinogen 1 and pepsinogen 2. Statistical Analysis - Descriptive data will be described as means and SDs for continuous variables, and analysis of variance (ANOVA), ANCOVA and Chi-square tests were used for assessing the significances. Bonferroni method was used for post-hoc comparison in ANOVA. We tested the variables scales in this study for multi-collinearity by correlation matrix and VIF(variance inflation factor). Odds ratios (ORs) and the 95% confidence interval (CI) were calculated to estimate the relative risk of diabetes mellitus/metabolic syndrome by logistic regression model. The Cox’s proportion hazard model will be derived for prediction of diabetes mellitus and metabolic syndrome. There are four categories for comparison: (1) NFG(Normal Fasting Glucose), IFG(Impaired Fasting Glucose), IGT(Impaired Glucose Tolerance) and IFG+IGT (2)DM and non-DM (3) hepatitis B/C infection and non-infection (4) helicobacter pylori infection and non-infection. A p-value below 0.05 is considered significant. The statistical analyses are performed with SPSS statistical Package (SPSS base 16.0, SPSS Inc. Chicago). |