Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/30426
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18074/20272 (89%)
Visitors : 4109325      Online Users : 6313
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/30426


    Title: 再生化石油品以快速混合輔助改質式氧化脫硫系統能源化再利用之研究
    The Study of High-Speed Mixing Assisted Oxidative Desulfurization Modification Process on the Energy Utilization of Recovered Fossil Fuel Oil
    Authors: 萬孟瑋
    Contributors: 嘉藥學校財團法人嘉南藥理大學環境資源管理系(含碩士班)
    Keywords: 臭氧
    廢潤滑油
    廢輪胎熱裂解油
    固體態鎢磷酸
    氧化脫硫
    連續式脫硫模組
    經濟效益分析
    Ozone
    Phosphotungstic Acid
    Lubricant Oil
    Pyrolysis Oil
    Oxidative Desulfurization
    Continues Desulfurization Module
    Cost–Benefit Analysis
    Date: 2015
    Issue Date: 2017-11-22 10:37:41 (UTC+8)
    Abstract: 化石能源逐年枯竭,許多先進國家利用廢棄物資源再生方式產生替代性能源;而再生化石油品中含有之有機硫化合物於燃燒過程容易產生SO2的排放,形成對環境的汙染及人體之危害。因此,本研究針對高剪斷力混合氧化脫硫系統之缺點,製備不同組成之固體態鎢磷酸催化劑及使用臭氧取代雙氧水活化,進行目標有機硫化物氧化與廢潤滑油及廢輪胎熱裂解油之操作最佳化試驗。 本計畫預計以三年為期程,階段性計劃分別為:(1)建立此氧化系統對於指標有機硫之最佳化操作參數,並確立其反應機制及理論模式;(2)建立此氧化系統結合吸附劑脫?方式針對高硫油品之最佳操作條件,並驗證各類催化劑及吸附劑之再生效益;(3)建立一組10公升/小時處理量之再生化石油品氧化脫硫處理模組,完成脫硫反應槽之設計與建置,驗證脫硫後油品之主要成分,並依據法規規定分析油品品質及其作為燃料油之可行性;最後,利用經濟效益模式,分析連此續流式氧化脫硫模組實廠運行之經濟利益及對環境之影響。
    In response to the resulting exhaustion of fossil fuel energy, many countries around the world are devoting their efforts in investigating waste energy recovery and reuse technology, including oil recovery from the pyrolysis process of waste tires. Therefore, this study focus on the drawback of High-Speed Mixing assisted Oxidative Desulfurization (HSM-OD)process to develop different compositions of solid type catalysis(phosphotungstic acid)and utilize the ozone as the activation agent in replacing hydrogen peroxide, which applied to sulfur reduction from wasted lubricant oil and the pyrolysis oil recovered from waste tires. Moreover, their efficiency of HSM-OD technology is also examined. This project is based on the ideal of fossil fuel oil recycle and reuse as new energy, which is base on different research objects in three years. In the first year, the aim of the research focuses on the optimization of various conditions for organic sulfur compounds removal under HSM-OD technology, including polyoxometallate concentration, ozone amount in water, and acceleration from high speed mixing power. In the second year, different oils are executed under the optimal desulfurization conditions combined with solid adsorption, where the best desulfurization efficiency for pyrolysis oil is carefully examined. In the third year, the continue HSM-OD is designed under the treatment capacity of 10L/hour, where the optimal desulfurization conditions are also examined. Finally, a cost-benefit analysis (CBA) is used to directly measure the overall relationship between the benefits and the costs, and the distribution of those benefits and costs that is commonly implemented in units of money. This study is also a comprehensive economic analysis to support decision-making system. Finally, this project will achieve the goal of pyrolysis oil reuse under high-speed mixing oxidative system combined with solid adsorption to ensure the sustainable development of energy resource.
    Relation: 計畫編號:MOST104-2221-E041-002
    計畫年度:104;執行起迄:2015-08-01~2016-07-31
    Appears in Collections:[Dept. of Environmental Resources Management] MOST Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1501View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback