English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18076/20274 (89%)
造訪人次 : 4611365      線上人數 : 834
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/29703


    標題: DFT and TD-DFT study on structures, related energies, frontier molecular orbitals and UV-Vis spectra of [M(Tp)(PPh3)(Cl)(L)] (M = Ru and Fe;L = C3H4N2 and C13H11N)
    作者: Wang, Tsang-Hsiu
    Hsiao, Ching-Hsiang
    Chen, Shih-Hsiung
    Cheng, Yi-Tung
    Chen, Li-Yun
    貢獻者: 環境工程與科學系
    職業安全衛生系(含防災所)
    關鍵字: Photo-sensitizer
    DFT
    TD-DFT
    DSSC
    UV
    日期: 2015-12
    上傳時間: 2016-04-19 19:05:13 (UTC+8)
    出版者: Pergamon-Elsevier Science Ltd
    摘要: Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) with the DZVP/DZVP2 all-electron mixed basis sets are used to study the related energies, structures, frontier molecular orbitals and UV-Vis spectra for [M(Tp)(PPh3)(Cl)(L)](M = Ru and Fe; L = C3H4N2 and Cl3H11N). The related energies between the singlet state (low-spin) and nonet state (high-spin) for these complexes are reported. Because of the low related energies, these complexes are expected to be in the singlet state (low-spin). The calculated structural parameters for complexes 1 and 3 (Ru-based) are in very good agreement with the experimental values, and the geometries of complexes 2 and 4 (Fe-based) have been studied as well. The metal-ligand bond distances for the Fe-based complexes are predicted to be slightly shorter than those of the Ru-based complexes due to the small spatial extent of the 3d wave functions of the Fe atom. These complexes display a HOMO of metal d and pi(Cl) orbitals in character, and the LUMO is contributed by metal d and pi*(PPh3) or pi*(C13H11N) orbitals. The HOMO-LUMO energy gap (Delta EL-H) can be reduced by a pi-electron rich ligand (such as C13H11N) and a low electronegativity metal atom (such as Fe). A pi-electron rich ligand (such as C13H11N) can increase the electron accepting ability, which leads to more electrons being pumped into the pi*(PPh3) and pi*(C13H11N) orbitals and results in a red-shift and intensity-enhanced absorption in the UV-Vis spectrum. The UV-Vis absorption intensity can be enhanced by solvent (such as CH3OH) as well as resulting in a blue-shift, which suggests that it is due to the polarizability and dielectric strength of the solvent. Owing to the low electronegativity of the Fe atom, a red-shift occurs in the UV-Vis spectra for complexes 2 and 4. The primary absorption features for complexes 1 and 3 are attributed to MLCT/LLCT transitions; on the other hand, a MLCT transition results in the primary absorption features for complexes 2 and 4. Our results show that Ru can be replaced by the inexpensive Fe as the photo-sensitizer. In addition, these Ru- and Fe-based complexes are good candidates for photo-sensitizers in DSSCs due to rich absorption bands and strong absorption intensities in the visible region.
    關聯: Polyhedron, v.102, pp.216-223
    顯示於類別:[職業安全衛生系(含防災所)] 期刊論文
    [環境工程與科學系(所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1851檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋