Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/29686
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18034/20233 (89%)
造访人次 : 23604694      在线人数 : 754
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/29686


    標題: Comparison of resistance improvement to fungal growth on green and conventional building materials by nano-metal impregnation
    作者: Huang, Hsiao-Lin
    Lin, Chi-Chi
    Hsu, Kunnan
    貢獻者: 職業安全衛生系
    關鍵字: Antifungal ability
    Aspergillus
    Penicillium
    Nano-metal
    Building material
    日期: 2015-11
    上傳時間: 2016-04-19 19:04:36 (UTC+8)
    出版者: Pergamon-Elsevier Science Ltd
    摘要: This study is aimed for comparing the biological resistance of green and conventional building materials (BMs) before and after nano-metal treatment, as well as exploring best nano-metals to improve fungal growth resistance of BMs. The selected BMs include wooden flooring (WF), green wooden flooring (GWF), gypsum board (GB), green gypsum board (GGB), calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC) and green mineral fiber ceiling (GMFC). The Aspergillus brasiliensis or Penicillium funiculosum was inoculated on each sample and their growth was visually evaluated according to ASTM G21-09.

    The fungal growth without nano-metals on test materials did not show that green materials were more prone to fungal growth. After nano-metal treatment, the observed order of fungal growth resistance of nano-metals at their highest selected concentrations on test materials was nano-zinc = nano-copper > nano-silver for WF and GWF, nano-zinc > nano-silver = nano-copper for GB, nano-zinc > nano-silver > nano-copper for GGB, CSB and GCSB, nano-silver > nano-copper = nano-zinc for MFC, and nano-silver > nano-copper > nano-zinc for GMFC. Nano-zinc seems to be the most favorable nano-metal for wood and wood composite materials. Green materials were less resistant to fungi attack relative to their conventional counterparts treated by nano-metals, particularly GWF and WF. All test nano-metals failed to provide complete protection against fungal growth on the eight test BMs at the selected concentrations. However, the higher the nano-metal concentration was, the longer the lag period until growth began and fewer fungi grew on the materials. (C) 2015 Elsevier Ltd. All rights reserved.
    關聯: Building And Environment, v.93 n.Part2, pp.119-127
    显示于类别:[職業安全衛生系(含防災所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1431检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈