Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/29640
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18034/20233 (89%)
造访人次 : 23792933      在线人数 : 629
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/29640


    標題: Combining gray system and poroelastic models to investigate subsidence problems in Tainan, Taiwan
    作者: Wang, Shih-Jung
    Lee, Cheng-Haw
    Chen, Jung-Wei
    Hsu, Kuo-Chin
    貢獻者: 觀光事業管理系(含溫泉產業碩士班)
    關鍵字: Subsidence
    Climate change
    Groundwater change
    Impact analysis
    Hazard potential
    日期: 2015-06
    上傳時間: 2016-04-19 19:02:58 (UTC+8)
    出版者: Springer
    摘要: Tainan, located in southwestern Taiwan, is a high-risk region for flooding and climate change effect and has a potential for future heavy rains. Groundwater pumping for aquaculture and irrigation along the coastal plain of Tainan is monitored due to subsidence. Predicting future subsidence and understanding the effect of climate change on subsidence can assist with regard to the planning and management of water and land resources in the early stages of subsidence, whose possible damage can thus be avoided. This study combines a physical model, called the nonlinear poroelastic model, and a gray-box model, called the gray system model, to evaluate and predict subsidence in the Tainan area. The subsidence under the climate change effect caused by changes in groundwater use is estimated. The climate change impact on subsidence and the potential for subsidence hazards are also analyzed. When taking into consideration the climate change effect, it is predicted that subsidence in Tainan will increase with increasing groundwater use. The maximum subsidence will increase from 29 cm (without additional discharge) to 34 cm (with additional 23.6 % discharge) and 35 cm (with additional 31.7 % discharge) in Xiaying District by 2039. The pattern of subsidence areas obtained by combining the nonlinear poroelastic and the gray system models is similar to that obtained using only the gray system model. However, the largest subsidence areas are different, and the subsidence quantity is much lower for the former due to the constraint of the physics-based poroelastic model. The combination of the nonlinear poroelastic model and the gray system model gives more reasonable estimations than either model can give alone. Large subsidence impact areas are located in the northwestern part of Tainan, and the largest impact is in Xiaying District. The potential for subsidence hazards is classified from the subsidence rates. The subsidence rate in Tainan is below 3 cm/year in the target years, and thus the potential for subsidence hazards is at middle and low levels. With climate change, the area with a middle level of potential for subsidence hazards extends across Yanshui, Xiaying, and Beimen Districts. From the study results, although the subsidence quantity is relatively low, rising sea levels and other effects of climate change expose Tainan to a high risk of flooding. Land and water resources should thus be managed to alleviate subsidence problems in the future.
    關聯: Environmental Earth Sciences, v.73 n.11, pp.7237-7253
    显示于类别:[觀光事業管理系(含溫泉所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1569检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈