Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/29602
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 17744/20032 (89%)
造访人次 : 7236857      在线人数 : 348
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.cnu.edu.tw/handle/310902800/29602


    標題: A fast particle swarm optimization for clustering
    作者: Tsai, Chun-Wei
    Huang, Ko-Wei
    Yang, Chu-Sing
    Chiang, Ming-Chao
    貢獻者: 資訊多媒體應用系
    關鍵字: Clustering
    Particle swarm optimization
    Pattern reduction
    日期: 2015-02
    上傳時間: 2016-04-19 19:01:40 (UTC+8)
    出版者: Springer
    摘要: This paper presents a high-performance method to reduce the time complexity of particle swarm optimization (PSO) and its variants in solving the partitional clustering problem. The proposed method works by adding two additional operators to the PSO-based algorithms. The pattern reduction operator is aimed to reduce the computation time, by compressing at each iteration patterns that are unlikely to change the clusters to which they belong thereafter while the multistart operator is aimed to improve the quality of the clustering result, by enforcing the diversity of the population to prevent the proposed method from getting stuck in local optima. To evaluate the performance of the proposed method, we compare it with several state-of-the-art PSO-based methods in solving data clustering, image clustering, and codebook generation problems. Our simulation results indicate that not only can the proposed method significantly reduce the computation time of PSO-based algorithms, but it can also provide a clustering result that matches or outperforms the result PSO-based algorithms by themselves can provide.
    關聯: Soft Computing, v.19 n.2, pp.321-338
    显示于类别:[資訊多媒體應用系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML590检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈