Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/29591
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18076/20274 (89%)
造访人次 : 4629366      在线人数 : 1301
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/29591


    標題: In Situ Test of School Buildings Retrofitted with External Steel-Framing Systems
    作者: Shih, C. T.
    Chu, S. Y.
    Liou, Y. W.
    Hsiao, F. P.
    Huang, C. C.
    Chiou, T. C.
    Chiou, Y. C.
    貢獻者: 職業安全衛生系
    關鍵字: School buildings
    External steel-framing systems
    In situ push-over test
    Seismic capacity assessment
    Concrete and masonry structures
    日期: 2015-01
    上傳時間: 2016-04-19 19:01:19 (UTC+8)
    出版者: Asce-Amer Soc Civil Engineers
    摘要: In situ push-over experiments and analytical assessments were conducted in this study to investigate the seismic capacity of RC school buildings at the Guan-miao Elementary School in Tainan City, Taiwan. Both prototype and external steel-framing specimens were constructed and compared. Reinforcements with steel channels were adhered to the captive columns and their adjacent beams in the weak direction, to retrofit the school building through the creation of external steel-framing systems. The design and construction procedures of the beam-column connection are introduced, as well as detailed drawings of the column-base anchorage system, both of which are key to the effects of the proposed retrofitting method. The experimental results show that the steel-framing system can be firmly bonded to the retrofitted specimen, providing continuous stress transference from the beam-column joints to the steel channels. The failure mode of the retrofitted captive columns was shifted from shear failure, as seen with the prototype specimen, to flexural-shear failure, with the retrofitted one. Both the experimental and analytical results show the following: The maximum total base shear strength increases 2.11 times, the total enclosed area of the stored energy increases 2.20 times, and ductility capacity increases 1.31 times. The external steel-framing systems proposed in this work can thus effectively enhance the base shear strength and the ductility of the specimens. (C) 2014 American Society of Civil Engineers.
    關聯: Journal of Structural Engineering, v.141 n.1 S1, Article ID D4014002
    显示于类别:[職業安全衛生系(含防災所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1805检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈