資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://ir.cnu.edu.tw/handle/310902800/28584
|
標題: | Gelsolin (GSN) induces cardiomyocyte hypertrophy and BNP expression via p38 signaling and GATA-4 transcriptional factor activation |
作者: | Hu, Wei-Syun Ho, Tsung-Jung Pai, Peiying Chung, Li-Chin Kuo, Chia-Hua Chang, Sheng-Huang Tsai, Fuu-Jen Tsai, Chang-Hai Jie, Yu-Chi Liou, Ying-Ming Huang, Chih-Yang |
貢獻者: | 醫務管理系 |
關鍵字: | Cardiac hypertrophy Gelsolin ( GSN) Cytoskeleton |
日期: | 2014-05 |
上傳時間: | 2015-05-06 21:21:32 (UTC+8) |
出版者: | Springer |
摘要: | Cardiomyocyte hypertrophy is an adaptive response of the heart to various types of stress. During the period of stress accumulation, the transition from physiological hypertrophy to pathological hypertrophy results in the promotion of heart failure. Gelsolin (GSN) is a member of the actin-binding proteins, which regulate dynamic actin filament organization by severing and capping. Moreover, GSN also regulates cell morphology, differentiation, movement, and apoptosis. In this study, we used H9c2 and H9c2-GSN stable clones in an attempt to understand the mechanisms of GSN overexpression in cardiomyocytes. These data showed that the overexpression of GSN in H9c2-induced cardiac hypertrophy and increased the pathological hypertrophy markers atrial natriuretic peptide brain natriuretic peptide. Furthermore, we found that E-cadherin expression decreased with the overexpression of GSN in H9c2, but beta-catenin expression increased. These data presume that the cytoskeleton is loose. Further, previous studies show that the mitogen-activated protein kinase pathway can induce cardiac hypertrophy. Our data showed that p-p38 expression increased with the overexpression of GSN in H9c2, and the transcription factor p-GATA4 expression also increased, suggesting that the overexpression of GSN in H9c2-induced cardiac hypertrophy seemed to be regulated by the p38/GATA4 pathway. Moreover, we used both the p38 inhibitor (SB203580) and GSN siRNA to confirm our conjecture. We found that both of these factors significantly suppressed gelsolin-induced cardiac hypertrophy through p38/GATA4 signaling pathway. Therefore, we predict that the gene silencing of GSN and/or the downstream blocking of GSN along the p38 pathway could be applied to ameliorate pathological cardiac hypertrophy in the future. |
關聯: | Molecular and Cellular Biochemistry, v.390 n.1-2, pp.263-270 |
顯示於類別: | [醫務管理系(所)] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 1797 | 檢視/開啟 |
|
在CNU IR中所有的資料項目都受到原著作權保護.
|