In this study, the target compound is dimethyl sulfoxide (DMSO), which is used as a photoresist stripping solvent in the semiconductor and thin-film transistor liquid crystal display (TFT-LCD) manufacturing processes. The effects of the operating parameters (pH, Fe2+ and H2O2 concentrations) on the degradation of DMSO in the fluidized-bed Fenton process were examined. This study used the Box-Behnken design (BBD) to investigate the optimum conditions of DMSO degradation. The highest DMSO removal was 98 % for pH 3, when the H2O2 to Fe2+ molar ratio was 12. At pH 2 and 4, the highest DMSO removal was 82 %, when the H2O2 to Fe2+ molar ratio was 6.5. The correlation of DMSO removal showed that the effect of the parameters on DMSO removal followed the order Fe2+> H2O2 > pH. From the BBD prediction, the optimum conditions were pH 3, 5 mM of Fe2+, and 60 mM of H2O2. The difference between the experimental value (98 %) and the predicted value (96 %) was not significant. The removal efficiencies of DMSO, chemical oxygen demand (COD), total organic carbon (TOC), and iron in the fluidized-bed Fenton process were higher than those in the traditional Fenton process.
關聯:
Environmental Science and Pollution Research, v.21 n.24, pp.14158-14165