Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/28523
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18034/20233 (89%)
造访人次 : 23356774      在线人数 : 451
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/28523


    標題: B-Type Natriuretic Peptide Inhibits Angiotensin II-Induced Proliferation and Migration of Pulmonary Arterial Smooth Muscle Cells
    作者: Hsu, Jong-Hau
    Liou, Shu-Fen
    Yang, San-Nan
    Wu, Bin-Nan
    Dai, Zen-Kong
    Chen, Ing-Jun
    Yeh, Jwu-Lai
    Wu, Jiunn-Ren
    貢獻者: 藥學系
    關鍵字: pulmonary vascular remodeling
    reactive oxygen species
    cGMP
    日期: 2014-08
    上傳時間: 2015-05-06 21:19:21 (UTC+8)
    出版者: Wiley-Blackwell
    摘要: Pulmonary vascular remodeling, characterized by disordered proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a pathognomonic feature of pulmonary arterial hypertension. Thus, pharmacologic strategy targeting on anti-proliferation and anti-migration of PASMCs may have therapeutic implications for PAH. Here we investigated the effects and underlying mechanisms of B-type natriuretic peptide (BNP) on angiotensin II (Ang II)-induced proliferation and migration of PASMCs. Proliferation and migration of PASMCs cultured from Wistar rats were induced by Ang II, with or without BNP treatment. In addition, potential underlying mechanisms including cell cycle progression, Ca2+ overload, reactive oxygen species (ROS) production, signal transduction of MAPK and Akt, and the cGMP/PKG pathway were examined. We found that BNP inhibited Ang II-induced PASMCs proliferation and migration dose dependently. BNP could also arrest the cell cycle progression in the G(0)/G(1)-phase. In addition, BNP attenuated intracellular calcium overload caused by Ang II. Moreover, Ang II-induced ROS production was mitigated by BNP, with associated down-regulation of NAD(P)H oxidase 1 (Nox1) and reduced mitochondrial ROS production. Finally, Ang II-activated MAPKs and Akt were also counteracted by BNP. Of note, all these effects of BNP were abolished by a PKG inhibitor (Rp-8-Br-PET-cGMPS). In conclusion, BNP inhibits Ang II-induced PASMCs proliferation and migration. These effects are potentially mediated by decreased calcium influx, reduced ROS production by Nox1 and mitochondria, and down-regulation of MAPK and Akt signal transduction, through the cGMP/PKG pathway. Therefore, this study implicates that BNP may have a therapeutic role in pulmonary vascular remodeling. (C) 2013 Wiley Periodicals, Inc.
    關聯: Pediatric Pulmonology, v.49 n.8, pp.734-744
    显示于类别:[藥學系(所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1633检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈