淨水污泥(Drinking water treatment sludge, DWTS)主來自於淨水場的沉澱與過濾單元,據估計,台灣每年所產生的淨水污泥量超過15萬公噸,大部分的最終處理方法為污泥脫水後進行焚化或掩埋處理,但近年來掩埋場不足且污泥處理費用不斷高升,而使淨水污泥代處理費用更加昂貴,成為淨水成本的一大支出。在永續發展的考量下,污泥減量與資源化再利用技術確有其發展的重要,台灣地區的淨水場所棄置的污泥大多為可塑性粒徑細緻之粉土與黏土,因此多做為水泥原料、培養土、紅磚、燒製成輕質骨材或是做為農栽培植土等再利用方式。 地下水為水源之淨水場,由於地下水於淨水處理程序之中,加入了大量的氧化劑用以氧化水中的溶解鐵錳離子,因此產出之淨水污泥為鐵錳含量高的污泥。本研究即利用此一特性,評估此一污泥是否可作為原料來製備具強氧化力的氧化混凝劑(Sludge induced oxidant & coagulant, SIOC),為淨水場的廢棄污泥資源化再利用找尋可能性。而基於鐵、錳氧化物吸附砷之效果為極佳,因此本研究亦設計混凝試驗,比較SIOC、氯化鐵、氯化鐵併用高錳酸鉀進行水中含三價砷與五價砷的混凝沉澱,評估在不同的藥劑量與pH值之下,混凝除砷的最適操作條件。 cost for the disposal of such an enormous amount of solid wastes has become a major fraction in the cost for water production. For the Environmental sustainability, the apparent increase in the quantity of sludge produced resulted in the development of more efficient and environmentally friendly approaches to its utilization. The most popular way of utilizing DWTS is by manufacturing of bricks, cement, light aggregates and agricultural use such as potting soil or gardening soil. In this study, a DWTS from groundwater water treatment plant reproduced as a new water clarifying agent will be investigated. Iron and manganese are the important component in the DWTS and this opens the possibility of its reuse. A method to synthesize Sludge induced oxidant and coagulant(SIOC) via wet chemical route is proposed. The feasibility of using SIOC is investigated. This study also aims to determine the ability of SIOC, FeCl3 and FeCl3 with KMnO4 in removing Arsenite include As+5 and As+3 from water by oxidation followed by coagulation. Coagulation experiments will be utilized to examine the effects of both chemical dose and pH in order to find the optimum condition in removing As+5 and As+3 from water.