Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/28180
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18259/20457 (89%)
Visitors : 6437543      Online Users : 1410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/28180


    Title: 客製化商品與雲端服務資訊系統發展策略之研究
    Customized Products And Cloud Services Research on Development Strategy of Information System
    Authors: 洪健文
    Contributors: 嘉南藥理科技大學資訊管理系
    Keywords: 雲端服務客製化產品促銷
    資料探勘
    電子商務
    雲端運算
    類神經網路
    Cloud services customized product promotions
    data mining
    e-commerce
    cloud computing
    artificial neural network
    Date: 2012
    Issue Date: 2014-10-20 21:48:44 (UTC+8)
    Abstract: 隨著雲端服務以及網際網路和電子商務的發展,企業得以與顧客進行一對一接觸並提供電子化的服務。然而,雲端服務與網際網路的便利性,使得網路行銷的競爭優勢多於傳統的行銷市場,顧客也因選擇性增多而忠誠度降低。因此,如何吸引顧客是企業經營的一大挑戰。 提供雲端服務客製化產品服務以符合顧客需求是一種解決問題的方式。本文提出一個雲端服務客製化產品資訊系統,以幫助企業能於網際網路中提供客製化產品行銷,以符合客製化的產品消費需求,藉此達到刺激顧客購買意願,以增加銷售量。本文提出的雲端服務資訊系統發展策略架構包含三個構成要素:(1) 電子商務服務; (2) 促銷類型模組; (3) 雲端服務客製化促銷產品。 首先,制定電子商務服務,並以銷售促銷策略為理論基礎;其次,先利用類神經網路中的自適應共振理論(Adaptive Resonance Theory Network, ART)進行市場區隔後,再運用資料探勘技術中的關聯規則探勘(Association Rule Mining)及序列型樣探勘(Sequential Pattern Mining)有效率地分析顧客(包括所有顧客、族群顧客以及個別顧客)消費行為,找出候選促銷產品;最後,利用雲端服務評估指標對候選促銷產品進行評估以產生最終的促銷產品。另一方面,除了雲端服務客製化的促銷產品外,促銷產品的促銷價將隨顧客的不同而調整。盼能藉由以主動的雲端服務客製化促銷產品與價格,提高顧客忠誠度並且增加企業利潤。
    With the development of cloud services and the Internet and e-commerce, enterprise to one-to-one contact with customers and the delivery of electronic services. However, cloud services and the convenience of the Internet, makes the network marketing of competitive advantage than traditional marketing, customer loyalty due to selective increase reduces. Therefore, how to attract customers is a big business challenge. The paper presents a cloud service customized product information system, to help businesses to be able to provide customized product marketing in the Internet in order to meet consumer demand for customized products, in order to stimulate the customers buying in order to increase sales. Cloud service of information system development strategic framework proposed in this article contains three elements: (1) e-commerce services, and (2) promotion type modules, and (3) the cloud services customized promotional products. First of all, develop e-commerce services, and sales promotion strategy as the theoretical basis and, second, first class of neural network Adaptive resonance theory (Adaptive Resonance Theory Network, ART) following a market segment and application of association rules in data exploration techniques exploration (Association Rule Mining)-and sequence-like exploration (Sequential Pattern Mining) Efficient analysis of customers (includes all customers, community customers, individual customers), consumer behavior, identify candidates for promotional products and, finally, using the cloud service delivery and evaluation of targets to evaluate candidates for promotional products to produce the final promotional products. The other hand, in addition to cloud services customized promotional products, promotional products sales price will vary for different customers and adjust. We hope that through active cloud services to customized promotional products and prices, increase customer loyalty and increased profits.
    Relation: 計畫編號:NSC101-2410-H041-003
    計畫年度:101;起迄日期:2012-08-01~2013-07-31
    Appears in Collections:[Dept. of Information Management] MOST Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1583View/Open
    客製化商品與雲端服務資訊系統發展策略之研究.PDF1407KbAdobe PDF126View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback