English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18259/20457 (89%)
造訪人次 : 6304568      線上人數 : 698
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/27927


    標題: Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand
    作者: Tsai, Ying I.
    Sopajaree, Khajornsak
    Chotruksa, Auranee
    Wu, Hsin-Ching
    Kuo, Su-Ching
    貢獻者: 環境資源管理系
    環境工程與科學系
    醫藥化學系
    關鍵字: Chiang Mai
    Biomarkers
    Carboxylates
    Levoglucosan
    Sugar Alcohols
    Soil Biota
    日期: 2013-10
    上傳時間: 2014-05-26 10:49:21 (UTC+8)
    出版者: Pergamon-Elsevier Science Ltd
    摘要: PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils. (c) 2012 Elsevier Ltd. All rights reserved.
    關聯: Atmospheric Environment, v.78 SI pp.93-104
    顯示於類別:[環境資源管理系(所)] 期刊論文
    [環境工程與科學系(所)] 期刊論文
    [食藥產業暨檢測科技系(含五專)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1770檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋