Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/27574
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18074/20272 (89%)
造访人次 : 4078020      在线人数 : 1191
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/27574


    標題: Ultrasound-assisted oxidative desulfurization (UAOD) using phosphotungstic acid: effect of process parameters on sulfur removal
    作者: Wan, Meng-Wei
    Biel, Luisa Cyd Charisse
    Lu, Ming-Chun
    de Leon, Rizalinda
    Arco, Susan
    貢獻者: 環境工程與科學系
    環境資源管理系
    關鍵字: Phase Transfer Agent
    Phosphotungstic Acid
    Ultrasound-Assisted Oxidative Desulfurization
    日期: 2012-09
    上傳時間: 2014-03-21 16:13:58 (UTC+8)
    出版者: Desalination Publ
    摘要: The oxidation of dibenzothiophene (DBT) and benzothiophene (BT) from a model diesel fuel, using hydrogen peroxide (H2O2) as an oxidant, was carried out in the presence of phosphotungstic acid and phase transfer agent (PTA) at 50-80 degrees C. The desulfurization efficiency and selectivity for the various compounds were examined and compared on the basis of the amount of sulfur converted to polar sulfone. The effect of process parameters (temperature, amount of catalyst, amount of PTA, and H2O2 concentration) were investigated to determine the highest reaction rate on the conversion of BT and DBT. The results indicate that using [PW12O40](3-) as a catalyst accelerates the reaction rate on the conversion of BT and DBT to their corresponding polar sulfones. High conversion (>99%) was achieved as the temperature was increased from 50 to 80 degrees C. The activity of BT also increased markedly when the amount of oxidant increased. For DBT, as low as 0.02 M of H2O2 was enough to lower the concentration from 500 to 10 ppm at 80 degrees C. The Arrhenius equation was appropriately applied to describe the data by using the pseudo-first-order reaction kinetic equation. The apparent activation energies for BT and DBT were determined to be 60.52 and 45.01 kJ/mol, respectively.
    關聯: Desalination And Water Treatment, 47(1-3), 96-104
    显示于类别:[環境工程與科學系(所)] 期刊論文
    [環境資源管理系(所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2391检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈