本研究利用濕式含浸法將鋯、銅金屬分布於農業廢棄物-椰殼纖維中,經熱裂解高溫燒結成含鋯、銅之活性碳觸媒並應用於去除氮氧化物之還原。研究中利用比表面積儀分析碳觸媒之比表面積及孔隙結構、以環境掃描式電子顯微鏡(E-SEM)分析碳觸媒之表面結構及金屬氧化物分布情形、以X射線能量分散光譜儀(EDS)分析碳觸媒上附著鋯(Zr)、銅(Cu)金屬元素分布及組成,並探討鋯/銅雙金屬活化劑製備之碳觸媒不同濃度、鋯/銅雙金屬元素含浸比例變化、還原劑濃度比例變化及還原反應溫度操作條件下探討於選擇性觸媒還原反應(SCR)及非選擇性觸媒還原反應(NSCR)之氮氧化物
(NOX)還原。
本研究以碳觸媒進行選擇性觸媒還原反應(SCR)及非選擇性觸媒還原反應(NSCR)據研究結果顯示,含浸低濃度銅活化劑可獲得較高孔隙率,且含銅金屬比例提高則有利於微孔發展並具高比表面積, 含浸濃度0.05M且鋯/銅=1/9時,碳觸媒比表面積為最高達993 m2/g,0.2M 鋯/銅=9/1碳觸媒為最低,為509 m2/g。應用於選擇性觸媒還原反應(SCR)具有良好之活性,在450℃還原反應溫度下,含銅金屬量高時具良好催化活性,0.1M濃度鋯/銅比1/9之碳觸媒對NO還原率達100%為最佳,而鋯含量對於SCR並無太大之活性反應,而在非選擇性觸媒還原反應(NSCR)中以550℃還原反應溫度下,0.15M濃度,鋯/銅比1/9之碳觸媒對NO還原率達74%為最佳,其中鋯含量越多對於NSCR並無顯著之影響,但含浸液濃度越高且銅佔比例越高對於NSCR具有較佳的NO還原效果。本研究結果得知,活性碳觸媒僅有高度比表面積對於氮氧化物(NOX)之還原效果並非主要影響參數,同時也要具有較佳之氣體吸附能力及還原活性大小,唯有適當之金屬活性、含量、分散性及比表面積才有助於提升碳觸媒於SCR及NSCR反應活性。 The wet immersing method was used to impregnate zirconium and copper in the coconut shell. The impregnated shells were then activated in deoxygen oven to form catalytic activated carbon and applied for NOx reduction. The pore properties of carbon catalyst were analysis by BET measurements and model analysis. The morphology and active metal dispersion were observed by SEM-EDS technology. The influence of preparation conditions on the activity of reduction of NOx were carried out by considering the zirconium/copper ratio, reactant concentration, operation temperature in the reduction of SCR and NSCR.
In this investigation, it was found that the low concentration of impregnating agent owned a higher degree of porosity and surface area. The cooper content enhanced the micropore development in the carbon matrix, the highest surface area of carbon catalyst is 993 m2/g with impregnating 0.05M solution in a ratio of zirconium / copper about 1/9. On the other hand, the lowest surface was observed with a ratio of zirconium / copper about 9/1at 0.2M. The SCR analysis showed that the copper content enhanced the activity of reduction in SCR and NSCR system. The zirconium content in the carbon matrix appears less dependence on the reduction activity in SCR and NSCR reaction. The surface area and well active metal dispersion on the surface of catalyst dominated the efficiency of reduction in SCR and NSCR system.